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Chapter 1 

Introduction 

Turbulent fluid motions are typically characterized by several features including randomness 
in both space and time, vorticity, an energy cascade from large to small scales where energy 
dissipation occurs, and a large increase in diffusion of properties (i.e., temperature, salinity) 
compared with molecular diffusion [McDougal et al., 1988]. These features of turbulent flows 
are usually caused by some sort of flow instability. In homogeneous flows, instabilities are 
usually related to the Reynolds number, which can be thought of as the ratio of inertial to 
viscous forces. As Reynolds number increases, inertial forces overcome viscous dissipation, 
and instabilities grow until they overtake the flow. In a density stratified flow, a gravity 
force is present which acts as a stabilizing force, giving rise to a buoyancy force that must 
be overcome as well as viscous forces for the fluid to become turbulent. This suggests that 
the Froude number, which can be considered a ratio of inertial to gravity forces, will also be 
important in determining if a flow becomes turbulent. Moreover, the addition of a buoyancy 
force helps create a situation where the transition to turbulence is marked by intermittent 
turbulent patches in the flow, rather than a smooth transition throughout the flow as in a 
homogeneous flow. The characterization of this intermittency of turbulence within a density 
stratified flow is an area of active research. 

When one considers the fact that the atmosphere and ocean are density stratified fluids, 
it can be said that the vast majority of the flows on Earth take place in stratified fluids. 
They occur in the ocean below the mixed layer, in the stratosphere, and in the nocturnal 
atmospheric boundary layer (at night the sun does not provide energy to mix the atmosphere 
near the Earth). Turbulence often occurs in these flow regimes due to free shear instabilities 
(e.g., Kelvin-Helmholtz), internal wave breakdown, and wakes of structures such as islands, 
mountains, and submarines. Turbulence in these areas has impact ranging from weather 
prediction to pollution dispersion. It is this area of geophysical turbulence that will be the 
focus of this dissertation. 

An important effect of stratification is that gravity allows internal gravity waves to 
form. Internal waves have the ability to propagate energy throughout the flow [e.g., Riley 
and Lelong, 2000, Slinn and Riley, 1996, Winters et al, 1995]. Turbulence caused by the 
breakdown of internal gravity waves can affect the mixing of heat and elements within 
the fluid [Lombard and Riley, 1996a,b, Slinn and Riley, 1996, 1998]. While important in 
density stratified flows, breakdown of internal waves will not be examined in this study. 
Rather, the focus of this study will be turbulence formed by free shear instabilities by 
flows dominated by vortical modes. The remainder of this chapter contains description 
of density stratification that occurs in nature, followed by a literature review of density 
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stratified flows. Chapter 2 contains theoretical considerations including a derivation of the 
equations of motion and a description of the Boussinesq approximation. Chapter 3 contains 
results of studies that investigate vertical shear and dissipation rate, buoyancy Reynolds 
number, and parameterization of turbulence using Taylor-Green simulations and uniform 
density stratification. Chapter 4 contains results of investigations that study the effect 
of non-uniform density gradient on simulated wake flow, including a method of calculating 
potential energy in non-uniform stratification. Chapter 5 contains conclusions and proposed 
future work. 

Notation Several equations are introduced in this document, and often it is difficult to 
distinguish between dimensional and nondimensional quantities. As such, a convention is 
adopted in this document where (r) is used to denote dimensional quantities, while unmarked 
quantities (i.e., no tilde) will denote nondimensional quantities. 

1.1    Density Stratification in Fluids 

In the atmosphere and ocean, distinct layers form that are characterized by the rate of 
temperature (and hence density) change with height. The atmosphere is typically separated 
into four layers; starting from the Earth's surface and increasing in height these layers are 
the troposphere, stratosphere, mesosphere, and thermosphere [e.g., Brasseur and Solomon, 
1984, Labitzke and van Loon, 1999, Lutgens and Tarbuck, 1995]. The ocean is typically 
divided into three regions; starting from the ocean surface and increasing in depth these 
layers are the mixed layer, the thermocline, and deep water [Colling, 2002, Gill, 1982]. 
This section contains a brief description of each layer and its significance to geophysical 
turbulence, and the reader is referred to the aforementioned references for further discussion 
on the atmosphere and ocean. 

1.1.1     Atmosphere 

The troposphere is the lowest layer in the atmosphere. It varies in height, spanning from the 
Earth's surface to approximately 18km over the tropics, while spanning to approximately 
10km over the Earth's poles. The troposphere contains approximately 80% of the total air 
mass of the Earth, and is where all weather phenomenon takes place. During the day solar 
heating of the Earth's surface give rise to convection currents in the troposphere, causing 
the troposphere to be well mixed. At night solar heating ceases, and radiative cooling causes 
a stable density stratification layer to form in the lower 3-5km of the troposphere. Hence, 
this layer is referred to as the nocturnal boundary layer. 

The adiabatic change in temperature with height is called the lapse rate, G, and is 
defined as [Gill, 1982, p.50]: 

AT 
G   =    -— 1.1 

Az 
G   =   gaf/cp, (1.2) 

where g is the gravitational acceleration, T is the temperature, and cp is the specific heat, 
a is the thermal expansion coefficient at constant pressure p, and humidity (or salinity in 
the ocean) 5: 

1 dp 
a •• 

PdT 
(1.3) 

P,S 
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Since there is a negative sign in front of G in (1.1), and altitude is measured from the ground 
upwards, G is a measure of the decrease in temperature with height. G can (and does) 
become negative (signifying an increase in temperature with altitude), particularly in the 
stratosphere and thermosphere. G of the troposphere is taken on average to be 6.5°C/km, 
but can vary locally and depends on humidity content. For example, the nocturnal boundary 
layer is stably stratified, and has a negative G. Also, it is possible for cooler air to be trapped 
near the Earth's surface, resulting in a locally stable stratification layer with positive G. 
An area of cooler air trapped near the surface is termed a thermal inversion, and can cause 
pollutants and smog to be trapped near the Earth's surface instead of being convected away 
from the surface. Thermal inversions commonly occur when cool, moist air from the ocean 
blows over land and when a warm front moves into a region, trapping low temperature 
underneath. Westerly winds off the Pacific Ocean make Los Angeles an ideal location for 
temperature inversions to form, causing the city's famous smog. 

The upper bound of the troposphere is the tropopause. The tropopause is marked by a 
sharp change in G, and signifies the boundary between the troposphere and stratosphere. 
The location of the tropopause decreases in altitude from approximately 18km in the tropics 
to approximately 10km near the poles. 

The stratosphere spans from the tropopause to approximately 50km above the Earth's 
surface, and with the troposphere contains 99% of the Earth's air mass. The lower 2-lOkin 
of the stratosphere is near isothermal (i.e., G is near 0°C/km), while above 20km G becomes 
negative (increase in temperature with height). The negative G is believed to be caused by 
the absorption of ultraviolet radiation from the sun by ozone. Since density decreases with 
temperature for most (if not all) gases, the increase in temperature with height causes a very 
stable density stratification (hence the name stratosphere). The stable stratification acts as 
a barrier to vertical currents from the troposphere and inhibits vertical motion within the 
stratosphere. Such inhibition of vertical motion will result in motions to preferentially grow 
in the horizontal, which is of interest regarding mixing of elements and chemical reactions 
that take place in the stratosphere. 

The area where G becomes positive again is called the stratopause, and marks the 
separation between the stratosphere and the mesosphere. 

The mesosphere and thermosphere, while playing vital roles in heat absorption from 
the sun, are uninteresting from a fluid mechanics perspective. The mesosphere ranges 
from approximately 50km to 85km, while the thermosphere ranges from 85km to 500km. 
The lapse rate in the mesosphere is approximately 2°C/km, while in the thermosphere 
temperature increases with height as solar photons are absorbed. It is interesting to note 
that the northern lights occur in the thermosphere, and that the international space station 
has a stable orbit in the upper thermosphere 

1.1.2    Ocean 

The mixed layer of the ocean varies in depth, spanning from the ocean surface to a depth 
of approximately 10m near the poles, 200m in the mid-latitudes, and 50m-100m in the 
tropics. This layer is called the mixed layer because wind and waves cause it to be well 
mixed, resulting in temperature and salinity profiles that are close to uniform. Nearly all 
sunlight is absorbed in the mixed layer, causing temperatures in excess of 30°C. 

The lapse rate G of seawater is much smaller than that of the atmosphere, since air is 
much more compressible that seawater. G has a typical value of 0.125°C/km, and ranges 
between 0.1 and 0.2°C/km [Fofonoff and Millard, 1983, p.38].  Note that G is positive for 
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the ocean, but marks decrease in temperature with depth, since depth is measured from 
sea level downward from the sea surface (as opposed to the atmosphere where height is 
measured upward from the surface). 

The thermocline ranges from the bottom of the mixed layer to approximately 1000m. 
The region is called the thermocline because temperature drops rapidly, as much as 40°C/km 
near the top of the layer, cooling the thermocline to near 10°C at its lower boundary. This 
drop in temperature causes an increase in density with depth, hence the region is sometimes 
referred to as the pycnocline. Since density increases with depth, the thermocline is stably 
stratified. Since the thermocline is a link between the surface and the deep ocean, the 
dynamics of the thermocline are important and play a role in such topics as pollution 
dispersion, motion of small food sources (e.g., plankton), and heat dissipation between the 
surface and deep ocean. 

The deep ocean extends from the bottom of the thermocline to the ocean floor. In 
the deep ocean temperature and salinity (and hence density) are relatively uniform. In- 
terestingly, local patches of high density water are formed at the surface in cold regions 
including the North Atlantic off the coast of Greenland and in the Antarctic near the Ross 
and Weddell Seas where surface water freezes. When ocean water freezes it is fresh water 
that converts to solid mass, leaving a higher salinty, higher density fluid. (This process 
is called brine rejection [Colling, 2002, p.213]). These cold, high density sources of water 
sink from the surface and through the thermocline, forming a convective current. This 
convective current, along with wind driven currents, is referred to as the "conveyor belt," 
and helps bring water from the deep ocean to the surface in the mid-latitude Pacific. The 
rate of travel along the conveyor belt is on the order of 1000 years. 

1.2    Review of Previous Work 

1.2.1    Wake turbulence in stratified fluids 

Wakes are generated when there is relative motion between a body and adjacent fluid. 
Wakes in stratified fluid can be found in many settings, including such as those generated 
by airplanes, and submarines, mountains, and buildings. When analyzing wakes in stratified 
fluids, the Froude (F) and Reynolds (Re) numbers are typically defined in terms of the object 
size and velocity. Many experiments involve towing a sphere in a tank containing a density 
stratified fluid, leading to common F and Re definitions: 

F = ^z,    Re = , 
NT? v 

where U is sphere velocity, R is sphere radius, and N = g/podp/dz is buoyancy frequency. 
Here g is the gravitational acceleration constant, po is a reference density, and p is the 
background density. 

Scaling arguments from Spedding et al. [1996a] show that F > 3 for initial active turbu- 
lence (turbulence with the ability to overturn) to occur. Chomaz et al. [1993] demonstrate 
that the wake behaves initially as a homogeneous fluid for F > 4.5. In the late wake, many 
researchers have found these initial vortices to increase in horizontal length and decrease in 
vertical length, forming "pancake eddies" [Bonnier et al., 1998, Flor et al., 1995, Spedding 
et al., 1996a,b]. In addition, Spedding et al. [1996a,b] have shown the wake width profile 
to be the same as an unstratified flow, but with peak velocity an order of magnitude larger 
than unstratified flow. 
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It has been noted that horizontal planes in the wake are similar to monopole or dipole 
formation [Riley and Lelong, 2000]. While many studies on the evolution of dipoles have 
been carried out [Garten et al., 1998, Praud and Fincham, 2003, Spedding, 2002], an in- 
teresting study is that of Billant and Chomaz [2000b]. They show that vertical columnar 
dipoles undergo a "zig-zag" instability, causing the dipoles to be divided into separate pan- 
cake vortex layers. They note this instability to occur between 0.13 < F/JO < 0.21, with 
F/i0 = UQ/CNR) based on the initial dipole traveling velocity and radius. 

1.2.2    Mixing Efficiency 

Mixing is a small scale process affecting the thermodynamic makeup of a fluid. It is ir- 
reversible, as the fluid can not be returned to its original, pre- mixed state. Mixing is 
important in geophysical flows as it relates directly to the dynamics of heat, chemicals, and 
pollutants in the atmosphere and ocean. Mixing is often quantified by an "efficiency", or a 
relation between the rate of conversion of available potential energy to background potential 
energy (each defined below) to the rate of lost to viscous dissipation. There are differing 
definitions of mixing efficiency in the literature which will be examined in the following 
paragraphs. Prior to defining mixing efficiency, the concepts of available and unavailable 
potential energy are discussed. 

Discussion of potential energy in geophysical settings usually involves the concepts of 
available and background potential energy, first suggested by Lorenz [1955]. He noted that 
in order to convert the total potential energy in the Earth's atmosphere to kinetic energy 
the temperature needed to reach absolute zero, and all mass would be located at sea level 
(z = 0); conditions that cannot readily occur. (It is estimated that potential energy makes 
up 25% of the total energy (internal + potential + kinetic) in the Earth's atmosphere, 
while only 2% is kinetic energy [Gill, 1982. pg.81]). Instead, the potential energy Ep that 
is available for conversion to kinetic energy is said to be the result of any deviation from a 
background (or rest) potential energy, Eh- Et, is a state that would exist if the fluid were 
adiabatically redistributed (i.e., no heat transfer) to a minimum energy state. The available 
potential energy is the total potential energy, V, minus the background potential energy: 

Ep = V - Eb . 

Here V is defined as p(z)gz, and where p(z) is density as a function of vertical position z 
and g is the gravitational acceleration. Due to fluid motions, at a given instant p(z) may 
not be in its lowest energy state. Et, is the minimal potential energy attainable through 
the adiabatic redistribution of p [Thorpe, 1977, Winters et al., 1995] (further discussion on 
the computation of Eb is found in §4.2.2), and any change to Eb is deemed mixing. Similar 
explanations for Eb and Ea can be found in Staquet [2000] and Peltier and Caulfield [2003]. 

There are two definitions of mixing efficiency in the literature. One definition of mixing 
efficiency is the ratio of energy lost to background potential energy to the rate of kinetic 
energy dissipation lost to internal energy [e.g Winters et al., 1995]: 

ra = *, (1.4) 

where \ is the irreversible rate of potential energy dissipation to background or unavailable 
potential energy. A second definition of mixing efficiency is the proportion of kinetic energy 
lost by the fluid that leads to mixing, leading to the relation [e.g., Peltier and Caulfield, 
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2003]: 

Both Ta and T/, are easily computed in numerical simulations. However, in field ex- 
periments, x and e are difficult to make at the same time due to time requirements for 
measuring each quantity [Gargett and Mourn, 1995]. It would be beneficial to measure one 
quantity (usually e) and relate it to the other. This is done through the flux Richardson 
number Rj, defined as either the fraction of shear turbulent kinetic energy spent increasing 
potential energy [Smyth et ah, 1996] or the ratio of loss of kinetic energy to buoyancy flux 
to that produces by shear [Gargett and Moum, 1995]. Both definitions lead to the relation: 

Rf = JL-, (1.6) 
B + e 

where B = — (g/p0)p'w' is the turbulent buoyancy flux, and primes indicate fluctuating 
component (with w' vertical fluctuating velocity). In its current form, (1.6) does not relate 
to mixing, just the fraction of the loss of kinetic energy put into potential energy. To relate 
this to mixing, density is assumed to be linear in temperature, and the buoyancy flux can 
be written in terms of x: 

This allows Rf to be related to mixing by means of a dissipation flux coefficient: 

and mass diffusivity parameter [Osborn, 1980]: 

», = rd4j (i.8) 

In oceanic applications, Yd is often considered a constant with value 0.2 as suggested by 
Osborn [1980]. This value is then used to compute x based on measures of? [Smyth et ah, 
1996]. However, measurements of heat flux and ehave shown Td to vary between 0.1 to 0.4 
in the open ocean [Moum, 1990] to 0.7 in turbulent tidal front [Gargett and Mourn, 1995]. 

1.2.3    Fossil Turbulence 

The topic of fossil turbulence is championed by Gibson [1980], although he states the con- 
cept has been developed by others as early as 1969. Fossil turbulence is defined as "the 
remnant fluctuation in any hydrophysical field produced by active turbulence which persists 
after the fluid is no longer actively turbulent (overturning) on the scale of the fluctuation" 
[Gibson, 1980, 1987]. Gibson's hypothesis is that the vast majority of the ocean is fossilized 
turbulence with very few patches of active turbulence. 

The concept of fossilization is as follows: an "actively turbulent" patch is formed by some 
instability. In an actively turbulent patch, inertial forces are greater than buoyancy forces, 
and vertical overturning will occur. The onset of fossilization occurs when the inertial forces 
of the largest scales become equal to the buoyancy forces. In this state, the vertical length 
scale of the patch, Lp, becomes equal to the overturning scale L0 (see (2.53)). These large 
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scales are now considered fossilized since they can not overturn. As energy is dissipated (via 
e), the inertial force of the large scales diminishes. Then, without energy input, buoyancy, 
inertial, and viscous forces will all be equal. At this state, assuming isotropy, a transition 
kinetic energy dissipate rate is defined as etr = 25z>N2. 

Once fossilized, the patch is now in a state of microstructure events. The fossilized 
patch then exhibits "secondary turbulence events," presumably due to instabilities within 
the original turbulent patch. These secondary turbulence events entrap additional fluid into 
the fossilized patch. The size of the patch will expand, and then fossilize by the pathway 
described above. These secondary events are used to explain large regions of microstructure 
activity measured in the ocean. 

The concept of fossilization is not widely agreed upon. Gregg [1987] cites calculations of 
time constants that suggest the maximum possible age of the microstructure is well below 
that required for fossilization. Also, Gregg points to assumptions made by Gibson, namely 
that e (and mixing) are maximum at turbulence collapse, while measurements suggest 
significant mixing after turbulent collapse. 

1.2.4 Mixing in Ocean Boundaries 

Vertical mixing in the ocean is important to the transport of heat and salt as well as 
supplying nutrients from bottom water to the surface for support of biological life. Vertical 
mixing is often related to an "eddy diffusivity," which is the value used to describe the mixing 
caused by eddy motion. In the open ocean, measured values of vertical eddy diffusivity are 
approximately 10-20% of what is required for vertical mixing to occur, suggesting that very 
little vertical mixing occurs in the open ocean [Slinn and Riley, 1996]. Instead, this results 
suggests that the majority of mixing in the ocean occurs at the ocean boundaries (e.g., 
near continental slopes, islands, and other topological features). One method of significant 
mixing in the oceanic boundaries is believed to be due to internal wave reflection from 
sloping terrain [Eriksen, 1985, 1998, Slinn and Riley, 1996, 1998]. The process arises when 
an oncoming internal wave, traveling at some angle 6 to the horizontal, reflects from a 
sloping terrain a that is nearly equal to 9. In this case, linear theory predicts the smaller 
amplitude wave is reflected with larger amplitude, which can breakdown causing mixing to 
occur. This process is illustrated in figure 1.1. 

Eriksen [1982] has made observations of internal wave fields near sloping topography, 
noting the likely role of internal wave induced mixing in boundary layers of approximately 
100m. The amplitudes of reflected waves have been observed to be much less than linear 
theory prediction, which is attributed to frictional dissipation near the boundary. Labo- 
ratory experiments by Cacchione and Southard [1974] and Cacchione and Wunsch [1974] 
demonstrate that amplification of reflecting internal waves are in agreement with linear the- 
ory for cases away from the critical angle. When the angle of reflection is near the critical 
angle, the amplitude is much less than predicted. Ivey and Nokes [1989] and Taylor [1993] 
have found that for critical angle reflection the boundary layer turbulence is either steady 
or unsteady depending on the slope. 

1.2.5 Double Diffusion 

The density of the ocean is generally determined by two scalar parameters, temperature 
and salinity, with molecular diffusivities two orders of magnitude different (e.g., typical 
temperature and salinity Schmidt numbers for seawater are taken to be SCT = (U/DT) 
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Figure 1.1: Diagram of internal gravity waves reflecting from sloping terrain. As a reaches 
a critical angle, the wave reflection has a larger amplitude than the incident wave, which 
leads to instability and wave breakdown. (Taken from Slinn and Riley [1996], Fig. 1) 

= 7 and Scs = (V/DT) = 700. This indicates that salt diffuses much more slowly than 
temperature). Also, the contribution of temperature to density is the opposite of salt. 
That is, when a fluid increases in temperature, its density decreases, whereas when salt 
concentration increases the fluid density increases. This combination of large diffusivity 
difference and opposite contributions to density can lead to a double-diffusion instability 
[Gargett, 2003]. The classic example is an area of high temperature, high salinity fluid over 
an area of low temperature, low salinity fluid [Ruddick and Gargett, 2003, Schmitt, 1994]. 
This scenario is common in the subtropical oceans where warm surface water evaporates, 
increasing the salinity level at the surface. Since the region is top-heavy in salt, a fluid parcel 
from the top will flow downward. As the parcel convects downward it will exchange heat, 
but negligible salt, with the surroundings due to the large difference in diffusivities. Thus, 
the parcel remains denser than its surroundings and will continue to accelerate downward. 
Conversely, a fluid parcel gaining heat will become less dense and convect upward. This 
process leads to the formation of thin "fingers" of salt transport seen in shadowgraphs 
[Stern, I960]. Such salt fingers can be found in the ocean at the interface of layers in a 
thermohaline staircase. 

Thermohaline Staircase 

A thermohaline staircase is a series of uniform temperature and salinity of layers, separated 
by thin layers or "sheets" of high temperature and salinity gradients. They are associated 
with double-diffusive instabilities since similar staircases have been found in laboratory 
experiments [Kelley, 1987, Stern, 1969, Turner, 1973]. Thermohaline staircases have been 
documented in nature at several locations, including the Tyrrhenian [Molcard and Tait, 
1977] and Mediterranean Seas [Schmitt, 2003], the outflow of the Mediterranean sea into 
the Atlantic [Elliot and Tait, 1977, Williams, 1974] and in the subtropical Atlantic Ocean 
[Boyd, 1989, Lambert and Sturges, 1977, Schmitt et al., 1987]. Data from the subtropical 
Atlantic Ocean from 1960's to 1990's suggest that the staircases are permanent features of 
the waters where they are located [Schmitt, 2003]. 

The Caribbean-Sheets and Layers Transects (C-SALT) program was undertaken in 1985 
to examine staircase formation and microstructure in the tropical North Atlantic off the 
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coast of Barbados. Over an area of nearly 1 million km2, approximately 10 layers of uniform 
temperature and salinity are generally observed between the depths of 200-800m, each layer 
ranging from 5-40m in depth. The interface between layers is approximately l-10m deep 
in which very large temperature and salinity gradients exist [Schmitt et al., 1987]. The 
temperature difference in the interfaces between layers ranges between 0.5 — 0.8°C, and 
salinity change across the interface is typically 0.1-0.2 psu (practical salinity units). It is 
noted that these differences are much larger than those reported from the Tyrrhenian (0.1°C 
and 0.03 psu) and Mediterranean (0.2°C and 0.03 psu) seas. 

Microstructure measurements within the C-SALT layer interfaces show several "subin- 
terface" high gradient zones 1-10 cm thick [Gregg and Sanford, 1987, Marmorino, 1987, 
Schmitt et al., 1987]. Salt fingering occurs in these subinterfaces, and is believed to be the 
dominant mechanism of mixing and overturning of the thicker layers due to the high levels of 
mixing vs. the small amount of turbulence measured in these regions [Gregg, 1989]. The en- 
hanced mixing provided by salt-fingering has implications ranging from weather prediction 
to nutrient replenishment. 

The strength of a double-diffusive interface is given by the density ratio Rp: 

i?p=S (1.9) 
PSZ 

where Tz. Sz are the vertical temperature and salt gradients, a is the thermal expansion 
coefficient defined in (1.3), and (3 is the haline contraction coefficient: 

PdS T.,, 

Favorable conditions for salt fingering occur when 

1 < Rp < — ss 100 
«S 

where kf, ks are the molecular heat and salt diffusivities. It is noted that while this range 
seems large, the growth rate of salt fingers does not become significant until Rp < 2.0, with 
theoretical maximum growth rate at Rp « 1.6. Thus, while most of the ocean is favorable 
to salt fingering in the sense that Rp > 1.0, regions with 1.0 < Rp < 1.6 are more likely to 
show staircase profiles [Schmitt, 1981, 1988]. 

Differential Diffusion 

Double diffusion is a potential energy effect. Differential diffusion is a kinetic energy effect. 
The underlying cause is same, that salt diffuses about 100 times slower than temperature. 
However, in the presence of turbulence, the two are often assumed to mix at the same rate 
(hence have the same eddy diffusivities). This assumption is based in the limit of infinite 
Reynolds number. However, much of the ocean is mixed by patches of finite Reynolds, finite 
duration turbulence [Mourn, 1996, Smyth et al., 2005]. In these areas of finite Reynolds 
number, it is certainly plausible that mixing of temperature and salt occurs at different 
rates due to the large difference in diffusivities between the two. This difference in mixing 
by turbulence is referred to as differential diffusion and has implication in vertical diffusion 
of nutrients across the thermocline as well as the accuracy of current mixing models. 
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Turner [1968] is first credited with demonstrating differential diffusion by mixing a fluid 
stratified by either temperature or salt (independently) via oscillating grid turbulence and 
measuring very different turbulent diffusivities. Altman and Gargett [1990] found similar 
results when varying both temperature and salinity simultaneously. Jackson and Rehmann 
[2003] found that the ratio of salinity to thermal turbulent diffusivities KS/KT is between 
0.5 and 1 for buoyancy Reynolds number 50 < Reb < 500, values observed in the ocean. 

Numerically, the issue of differential diffusion is difficult to examine because of the range 
of scales required to be resolved [Gargett et al., 2003]. For instance, in a stratified flow the 
largest scale (smallest wavenumber) that needs to be resolved is the Ozmidov scale L0. The 
small scales are dependent on the scalar diffusivities, with the wavenumber to be resolved 
determined by the Batchelor wavenumber 

i 

\VKiJ 

where kv = (e/i^'3)1/4 is the Kolmogorov wavenumber. For seawater, to model the diffusion 
of temperature would require SCT

1
'
2
 = 71/2 fa 2.6 times the resolution than if the Schmidt 

number was taken as 1. The increase in resolution required for salinity is 26 times (Scs1'2 = 
7001'2 « 26). This can be a serious limitation in numerical simulations, particularly direct 
numerical simulations. As a result, tradeoffs must be made between Reynolds number and 
Schmidt number depending on the available computing resources (this is the case for all 
flows, not specific to differential diffusion). Gargett et al. [2003], using numerical simulations 
with a ratio of KT/KS = 0.1 (rather than 0.01) and maximum Re = UQLO/SCT = 99, show 
turbulent diffusivity of temperature to be greater than salinity by up to 22%. Smyth 
et al. [2005] demonstrate differential diffusion in simulations of mixing in breaking Kelvin- 
Helmholtz billows, utilizing a ratio KT/KS = 0.14. They note that the turbulent diffusivity 
is dependent on Reb, and the ratio of turbulent diffusivities becomes 1 when Reb ~ O(102). 



Chapter 2 

Theoretical Considerations 

2.1     Equations of Motion 

Fluid flow is described by equations of motion for mass, momentum, and internal energy 
and an equation of state for the fluid. These equations have the general form: 

^+V-(pv) = 0 (2.1a) 

-^ + V • (pvv) + 2f2 x (pv) = V • II + pA (2.1b) 
dt 

-^ + V • (pve) = V • (ft • v) - V • q + pv • A (2.1c) 
at 

p = p(C1,C2,C3...), (2-ld) 

where p is the density of the fluid, v = (111,112,113) is the velocity vector. f2 = (0,Clcos(4>), 
fisin((^>)) is the inertial frame rotation rate, II is the total stress tensor, A is an external 
acceleration applied to the fluid, e = E+ ^iif is the sum of internal energy U and mechanical 
energy, q is the heat flux, and p is the thermodynamic pressure. Equation (2.1b), with 
the Coriolis term 2fi x (pv) present, is written with a rotating frame of reference, as is 
often the case when studying geophysical flows. Equation (2.Id) is an equation of state 
related to the nature of the fluid. Cx refers to quantities that determine the state of 
the density. For example, in air Ci, C2, C3 might represent pressure, temperature, and 
humidity, while in sea water the C's might represent pressure, temperature, and salinity. In 
their present form, equations (2.1) are a set of coupled equations that completely describe 
the fluid motion. However, solutions to equations (2.1) are nearly impossible to obtain, and 
certain assumptions must be made to simplify the equations. Such assumptions include 
assuming a Newtonian fluid, incompressibility, and the Boussinesq assumption, each of 
which is explained below. 

2.1.1     Newtonian Fluid 

In order to use equations (2.1), something must be known or assumed about the molecular 
forces that describe the total stress tensor II. Under most circumstances, especially in 
geophysical flows, the fluid is assumed to obey Newton's law of viscosity, originally described 
by Newton in 1687. Newton's law of viscosity includes two assumptions: 

II 
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1. IT is a linear function of velocity gradients and thermodynamic state II(p, e, Vv). 

2. II is symmetric. 

The first assumption is made because it is desirable to have II invariant under Galilean 
transformation (i.e., II is the same in different inertial coordinate systems). Velocity gra- 
dients are invariant under Galilean transformation, while the velocity vector itself v is not 
Galilean invariant. The second assumption comes about by assuming that the fluid surface 
cannot support a moment, which forces II to be symmetric. 

To begin describing II mathematically, utilize the fact that pressure acts normal to the 
surface of a fluid element. Thus, pressure can only reside on the diagonal of II, allowing II 
to be written in the form 

ii = -pi+f (2.2) 

where I is the identity tensor, and f is the viscous stress tensor. Pressure is negative 
because in this case because it acts as a compressive stress. Since II has been assumed to 
be symmetric, and pressure is a normal force acting normal to the fluid surface acting only 
in the diagonal terms, it follows that f must be symmetric. Also, from early observations it 
is assumed that shear stresses in the fluid are linearly related to velocity gradients. Utilizing 
this information, a constitutive equation for f can be formed [Panton, 1996, p. 130]: 

f = 2/<E + A(V-v)I (2.3) 

where ft and A are the first and second coefficients of viscosity respectively, and E is the 
symmetric velocity gradient tensor 

E=I(Vv + (Vv)T), (2.4) 

with superscript T indicating transpose. Equation (2.3) is referred to as the Newtonian con- 
stitutive model. Substituting (2.3) into (2.2) yields the total stress tensor for a Newtonian 
fluid 

n = -pi + 2/2E + A(V • v)I. (2.5) 

Often (2.5) is simplified simplified by using Stokes' hypothesis, which states that thermo- 
dynamic and mechanical pressure are equal. This leads to Stokes's assumption of A = ~%f>- 

Now consider the body force pA and heat flux q within the flow. For density stratified 
flows, typically the only body force assumed to act on the flow it that due to gravity (i.e., 
centripetal acceleration 17 x $7 x f is negleged), yielding: 

pA = pg, (2.6) 

while heat flux is assumed to obey Fourier's heat conduction law: 

q = -kVT (2.7) 

where g is gravitational acceleration (pointing downward), k is thermal conductivity, and T 
is temperature. Substitution of (2.5), (2.6) (2.7) into (2.1) yields the Newtonian equations 
of motion for stratified flows 

§+V-(pv) = 0 (2.8a) 
at 

^C + V • (pvv) + 2ft x (,5v) = -Vp + 2V • (pE) + V(AV • v) + pg (2.8b) 
at 
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^ + V • (pve) = -(V • pv) + V • (f • v) + V • (fcVf) + p(v • g) (2.8c) 

p = p(Ci,C2,C3...) (2.8d) 

where the internal energy equation is left in terms of the viscous stress tensor. Equa- 
tions (2.8), while telling us something about the kinematic relationship between shear and 
velocity gradients, are still as set of coupled equations for p, v, U. A limited number of 
exact solutions exist, and further simplification is required to obtain more general solutions. 
The next section addresses transforming (2.8c) to an internal energy equation in terms of 
temperature. 

2.1.2    Internal Energy 

The total energy equation (2.8c) is separated into kinetic and internal energy parts. The 
kinetic energy equation is obtained by taking the dot product of (2.8b) with v, 

i btp-v2) 
7,-^r1    =    -v-Vp + v.(V-f) + p(v-g) (2.9) 
^     Dt 

where ^-. = -^ + v • V is the material derivative, and the viscous stress tensor has not been Dt      dt 
expanded (it will be shown later on that the viscous term can be neglected). Note the loss 
of the Coriolis term. This is because the quantity 2fi x (pv) is J_ v, hence v • [2fi x (pv)] 
is zero. Subtracting (2.9) from (2.8c) gives the internal energy equation 

£W1 = _pV-v + f : Vv + V-(ifcVf) (2.10) 

where the viscous terms have been left as f : Vv for now. 
Since temperature can be measured directly, it is desirable to have an equation for 

temperature T instead of U. To do this, first redefine (2.10) in terms of enthalpy H = 
U + (p/p) [Bird et al.. 2002. p. 337]: 

p^Jl = f: Vv + V • (JfcVf) + 5? . (2.11) 
Dt Dt 

Assuming H is a function of p and T only (as is the case for a Newtonian fluid), thermo- 
dynamic equilibrium of H reveals [Panton, 1996, p. 27] 

* - @)*+(S),* 
Pl 

p-T—^ 
dT 

dp 

=   CpdT + -[l + Tp]dp (2.12) 

with the thermal expansion coefficient ft defined as 

(2.13) **-|3 
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Multiplying (2.12) by p, and equating the right hand side of (2.11) to (2.12) yields the 
differential equation for temperature change: 

pcJSz = f : Vv + V • (fcVT) + f pJ: (2.14) 
Dt Dt 

It can be shown through scaling analysis that the viscous term is negligible.  Defining 
velocity scale U and length scale L, the ratio of the major viscous term to inertial terms: 

JfrE:E      ^   mi?   =u_U_ (215) 

pCp{DT/Dt)     pCpUT/L     Cp TL 

(2.15) is typically O(10~7) [Kundu and Cohen, 2002, p. 120], allowing the viscous term to 
be neglected. The equations of motion (2.8) can then be written as 

^+V-(pv) = 0 (2.16a) 
at 

^ + V • (pvv) + 2fl x (pv) = -Vp + 2V • (/iE) + V(AV • v) + pg (2.16b) 
at 

pC^Iz = V • (fcVT) + f ^2? (2.16c) 
Dt Dt 

p = p(p,f,S). (2.16d) 

Treating the atmosphere as an ideal gas with equation of state p = pRT, (1 can be shown 
to be the reciprocal of temperature 

?—IS 
PdT 

Thus, /3T = 1, reducing (2.16c) to: 

V P )\RT2)      f 

pCpS^r = V • (fcVT) + S? . (2.18) 
PDi Dt 

Alternatively, using the relation Cp — Cv — R, the equation of state for an ideal gas, and 

continuity in the form ^ = -/5(V- v), (2.18) can be written as [Bird et al., 2002, pg. 337]: 

~ DT   
pCv— = V • (/cVr) - p(V • v). (2.19) 

2.1.3     Static Stability 

A column of fluid is said to be stable when higher density parcels are located below lower 
density parcels (i.e., density decreases with height). Since density is a function of both 
temperature and pressure, compressibility effects may become important in determining 
static stability. For example, consider a fluid element at some height z\ that is displaced 
adiabatically (no heat transfer with the environment) to some lower elevation (and higher 
pressure) z-i-   As the fluid element is moved to the higher pressure region it will become 
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compressed. The pressure has done work on the element, and the element's temperature 
will increase. This is shown mathematically using the first law of thermodynamics: 

dE = dQ + dw (2.20) 

where dE is change in energy, dQ is change in internal heat, and dw is work. 
In order to determine static stability of a column of fluid a conserved quantity must be 

used. A conserved quantity remains the same when it undergoes an adiabatic process, i.e., 
a process by which dQ = 0. To see if temperature is conserved, begin by noting that the 
work done is related to the change in volume: 

dw = -p-dv, (2.21) 

where dv is the change in specific volume (v = 4). Conservation of temperature is examined 
for the atmosphere, where is air is assumed to obey the ideal gas equation of state (and 
thus neglecting humidity). The same analysis can be performed for seawater, but with a 
much more complicated equation of state (see Appendix). For an ideal gas, internal energy 
is defined as 

E = Cvf. (2.22) 

Substituting (2.21) and (2.22) into (2.20) (with dQ = 0) yields: 

Cvd,T   =   0 — p • dv 

,(KT\ 
CvdT   =    -pdl —1 

Cvdf   =    -RdT+*fdp 

C„dT 

P 
RTdp 

P 
dT dp , 
—    =    k— 2.23 
T P 

where k = R/Cp, and the relationship Cp = Cv + R has been utilized.  Integrating (2.23) 
from a reference temperature and pressure (usually taken at sea level) T0, p0 gives: 

demonstrating that temperature is not conserved when an adiabatic process is applied. 
Since temperature is not a conserved quantity, another quantity must be used to deter- 

mine the stability of the atmosphere. Potential temperature 9 is conserved, and is defined as 
the temperature a fluid particle would be if it were adiabatically compressed (or expanded) 
from its in situ pressure p to the reference pressure p0: 

[ h) 
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To see if 0 is conserved under an adiabatic process, start by rearranging (2.25) and differ- 
entiating: 

K 

Po 

Po) \PoJ      P 

Substituting these into (2.23) shows that potential temperature is conserved under an adi- 
abatic process: 

€ = 0. (2.26) 
e 

Thus, the gradient of potential energy dQ/dz is used to determine the stability of the 
atmosphere, with positive dQ/dz signifying a stable stratification. 

Compressibility effects are important in the ocean, particularly the deep ocean where 
large hydrostatic pressures exist. Since 

2.1.4    Incompressible Flow 

The assumption of incompressibility does not necessarily mean constant density flow. Rather, 
the incompressible flow assumption is that changes in density of a fluid particle are negligi- 
ble. To see when incompressibility can be applied, first assume that density is a function of 
pressure and temperature (neglecting salinity and humidity), which yields a general ther- 
modynamic transport equation for density [Panton, 1996. p. 230]. 

I Dp     ^Dp     ~DT 
--XTZ  = «—  -&-=- , 2.27) 
P Dt Dt Dt 

where 5 is the isothermal compressibility coefficient defined as 

(2.28) 
pop 

and j3 is the bulk or thermal expansion coefficient defined in (2.13). 
The next step is to nondimensionalize equations (2.27) and (2.16).  Denoting L, U, p0 

as length, velocity, and density scales, the following nondimensional quantities are defined: 

v x t p 
v=— x=— t = .   ~ p = — 

U L L/U Po 

T = -l- C=^ 8=1 
puyk p   cPo d0 

Substituting the above scales into (2.27) yields the following nondimensional density trans- 
port equation: 

Dp     PrB/3 DT' 
pDt      ' 

a (2.29) 
Dt A     Dt 

while substitution of the above scales into (2.16) yields the following nondimensional equa- 
tions (where equation of state is omitted): 

-| + V • (pv) = 0 (2.30a) 
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| + V.(pv) + i(Oxv) •Vp + ^ (2V • (ME) + V(AV • v) J + pjr2 

pCp 
DT 1 

-kV2T + (3B 
1     yM3

m  h T 
Pr        A 

Dp 

(2.30b) 

(2.30c) 
Dt       RePr 

In the above equations, the the following non-dimensional quantities have been obtained: 

Re = 

F2 = 

pLU 

P 

Hi 

Pr = 

M 

pCp 

k 

U 

a 

7 = ~± 

A = 5pCpf 

U_ 

fl 
Ro 

B = f3T. 

Here / = 2fisin(0) is the Coriolis frequency, and a is the speed of sound in the fluid medium, 
defined as 

dp 
a — 

dp 

From (2.29), it is evident that for change in density to be small, the square of the Mach 
number M2 must be small. Also, if one considers a flow decelerating from some velocity v 
to 0, the pressure change will be Ap = \pv. Substitution into M2 yields [Panton, 1996, p. 
236] 

M f2    _ v2   _.2dp pv2 dp 

a2          dp s P dp 

A~lAp 
ApT-7-T 

pAp 
Ap 

P 
(2.31) 

Hence, M2 can be seen as the relative change of density of the fluid. For incompressibility 
(negligible density change), M must be small, and terms containing M2 can be neglected. 
In addition, nondimensionalizing thermodynamic properties (e.g., /z, Cp) shows that when 
the Mach number is small relative changes in these properties are also small, allowing the 
properties to be considered constant. When a low Mach number is assumed, terms with 
M2 can be neglected in (2.29), resulting in the following density transport equation: 

^ = 0. 
Dt 

(2.32) 

Substituting (2.33d) into (2.30) and neglecting terms with M2 yields the following set of 
(dimensional) equations of motion: 

V • v = 0 (2.33a) 

p(—=• + v • Vv) + 2p(h x v) = -Vp + /W2v + pg 
at 

pCv£L = fcv2T 
Dt 

P = p(Ci,C2,C3...), 

(2.33b) 

(2.33c) 

(2.33d) 
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where (2.33a) is obtained via substitution of (2.32) into the full continuity equation (2.16a), 
(2.33b) results from substitution of the simplified continuity equation (2.33a), and (2.33c) 
is obtained via use of (2.19) and substitution of continuity equation (2.33a). Also, with 
p constant the viscous term simplifies to pS/2\ by substituting of equation 2.4 (in indicial 
notation): 

2/W • E 

=    /' 

1 0   (dui     ddj 
2 dxi \ dxj      dii 

d2Ui d2Uj 
 1 — 
oxidij      diidxi 

V(V-v) + V2v 

2~ =    /iV^v (2.34) 

where V(V • v) is zero from continuity. 
The set of equations (2.33) are termed the incompressible flow equations and are typ- 

ically considered valid for M < 0.3. A benefit of assuming incompressible flow (low Mach 
number) is that the energy equation (2.33c) is decoupled from the mass and momentum 
equations. This is important, as it allows for solution of four variables (pressure and three 
components of velocity) with four equations (continuity and three momentum equations) 
without solving for temperature or internal energy. 

2.1.5     Boussinesq Approximation 

The Boussinesq approximation is a widely applied approximation to the equations of motion 
first suggested by Boussinesq [1903]. In words, the Boussinesq approximation involves two 
assumptions: 

1) Density fluctuations within fluid motion are the result of thermal effects only (i.e., no 
pressure effect, salinity, humidity). 

2) Accelerations within the fluid are small compared to acceleration due to gravity. Thus, 
density fluctuations are unimportant in the flow unless multiplied by gravity. 

Following the presentation by Spiegel and Veronis [1960], begin by representing density in 
the following form 

pt(x, y, z, t) = po + p(z) + p(x, y, z, t) (2.35) 

where po is the constant spatial average density, p(z) is the variation of density in the 
absence of motion, and p is the fluctuation of density resulting from fluid motion. The scale 
height of density is defined as 

l_dp -1 

po dz 
I), (2.36) 

In the Boussinesq approximation it is assumed that the fluid motion is limited to a layer of 
thickness d that is much less than the scale height Dp [Spiegel and Veronis, 1960], i.e., 

d 
— < 1. 
D0 

(2.37) 
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Integrating (2.37) from minimum to maximum density within d yields 

Ap 
-^ = e < 1 (2.38) 
Po 

where Ap is the maximum density variation in the layer d. In addition to (2.38), the motion 
induced density fluctuations p are restricted to not exceed the static variation, i.e., 

P 
Po 

< 0(e) . (2.39) 

Spiegel and Veronis [1960] note that while (2.39) must be verified after solutions have been 
obtained, there has been no experimental evidence that p ever exceeds Apv. Using these 
criterion, substituting (2.35) into continuity equation yeilds: 

^   - D ..      -     ., 
V-v   =    -j-i(po + p + p) 

Dt \       Po     Po 

=    -^(eJL + €jL)+0(e2) (2.40) 
Dt \ Ap       ApJ 

To order e, (2.40) can be written as 
V-v = 0 (2.41) 

which is the same result as assuming incompressible flow. 
Now consider the hydrostatic equation of motion. Expressing pressure in the same form 

as density in (2.35) and substituting into the vertical component of momentum gives the 
following hydrostatic equation 

|? = -g(/3o + ,5) (2.42) 

where the fluctuating density p is zero since there is no fluid motion. Subtracting (2.42) 
from the total momentum equation (2.16b) with the full expression of density and pressure 
gives 

-C + V • (pvv) + 2p(ft x v) = -Vp + 2V • (/IE) + V(AV • v)gp. (2.43) 
dt 

Using the simplification of (2.41), and dividing by p, (2.43) can be reduced to 

^ + 2fJ x v = -^Vp-ge-^, + ;>V2v. (2.44) 
Dt P Ap 

where p and u = p/p have been taken to be a constant. Substituting (2.38) for e, the 
Boussinesq equations of motion can be written in their usual form as: 

V • v = 0 (2.45a) 

-+2fixv=      ^Vp-g^- + £V2v (2.45b) 
Dt Po Po 

D*   , «R„.-._      lf^     ~J   , .,fJ2.-. 

pCv— = kV2T (2.45c) 
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p = p(Ci,C2,C3...) (2.45d) 

Often it is necessary to have an evolution equation for the density of the fluid. This can 
be achieved through the internal energy equation 2.45c and the assumption that density 
fluctuations are not a result of pressure effects (i.e., the first assumption made at the 
beginning of this section), allowing the pressure dependence in the thermodynamic equation 
of state for density (2.27) to be eliminated. In addition, since density fluctuations are 
assumed to be small (cf. (2.38)), a linear relationship between the density and temperature 
fluctuation can be made. This allows substitution of Dp for DT in (2.45c), yielding the 
following Boussinesq equations: 

V • v = 0 (2.46a) 

£^ + 2ft x v = -— Vp' - s— + ^V2v (2.46b) 
Dt Po Po 

-Jz = KV
2

/5 (2.46C) 
Dt 

where k = k/(pCv) is the mass diffusivity. Equations (2.46) are those commonly solved 
in numerical experiments. As with the low Mach number approximation, the Boussinesq 
approximation allows mass and momentum to be decoupled from the energy (now density) 
equation, providing five variables (pressure, three velocities, density) with five equations 
(continuity, three momentum, density). However, the assumptions leading to the Boussi- 
nesq simplifications should not be overlooked, namely that internal accelerations are small 
compared to gravity and the fluid motion is in a layer much less than the scale height. If, 
for example, simulations were to be performed of the entire thermocline, fluid motions may 
exists in a layer d which is not negligible compared to the thermocline scale height, in which 
case the Boussinesq approximation will not be valid. 

2.1.6    Nondimensional Boussinesq equations 

Nondhnensionalization of the equations of motion (2.46) can provide insight to the relative 
importance of each term. In order to nondiminensionalize (2.46), the following nondimen- 
sional terms will be used: 

x i 
x = - t 

V 
v = — 

U 

P P —  - 
L M. 

Az 

L L/U 

n = 7 p=Jk- (2-47) / PoU1 

In 2.47 above, L is a length scale, U is a velocity length scale, and / = 2f2sin(#) is the 
Coriolis parameter (where 6 is the Earth's latitude). Note that in density stratified flows 
it is common to nondimensionalize p by by the product of the length scale and the scale of 
the change in density Ap/ Az. Also note that pressure is nondimensinalized by the dynamic 
pressure poU2. Substituting (2.47) into equations (2.46) yields the following nondimensional 
Boussinesq equations of motion: 

V • v = 0 (2.48a) 

£ + -*.(,» x,)--*,-(£)'«.+ ,Lv»v (2.48b) 
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V2p- (2.48c) 
DP l      rtf. 

u U UL V 
F = ^ Re= -r- Sc = - 

Lf NL V « 

Dt      ScRe 

The following nondimensional parameters are used to determine the significance of each 
terms in equatoins (2.48): 

7T XT f 

(2.49) 

where Ro is the Rossby number, F is the Froude number, Re is the Reynolds number, Sc is 
the Schmidt number, and N2 = (g/p)Ap/Az is the Brunt-Vaisala (or buoyancy) frequency. 
The significance of each nondimensional parameter is briefly described below. 

The Rossby number (Ro) describes the ratio of inertial to Coriolis forces. When Ro 
is large, Coriolis forces due to planetary motion can be neglected. This will occur in low- 
latitude regions of the Earth (i.e., in the Tropics), when the length scale is small, or when 
the velocity is very large. 

The Froude number (F) describes the ratio of inertia forces to gravity forces. In a 
stratified fluid, a buoyancy force arises due to the motion of fluid elements with differing 
density. For instance, a fluid element with a high density traveling upward to a lower density 
region would experience a buoyancy force trying to push it back to its lower, stable location. 
Decreasing F signifies increasing stratification strength. Note that buoyancy force can act 
as a stabilizing force that inhibits vertical motion. 

The Reynolds number (Re) describes the ratio of inertia forces to viscous forces. When 
Re is large, the inertial terms of the equations of motion dominate and viscous terms can 
be neglected, such as flows far from boundaries or with very large length scale. Conversely, 
a small Re indicates a viscous dominated flow. 

The Schmidt number (Sc) is used to describe the ratio of momentum diffusivity (i.e., 
viscosity) to mass diffusivity. A large Sc indicates that momentum is diffused faster than 
mass. Note the Sc w 0.7 for air, while in sea water Sc is approximately 7 for temperature 
and 700 for salinity. Often numerical simulations are performed with Sc = 1, since a higher 
resolution simultation is required to capture effects of both viscosity and diffusivity when 
Sc is much different than 1. 

2.1.7    Low Froude Number Equations 

In density stratified flow, the buoyancy force of the stratification acts to suppress (positive) 
vertical motions. This leads one to believe that the horizontal and vertical scales will be 
different. As such, it is common in the literature to find equations (2.46) and (2.48) divided 
into horizontal and vertical components [Billant and Chomaz, 2000a, Gargett, 1988, Lilly, 
1983, Riley and Lelong, 2000, Riley et al., 1981, e.g]. They are usually written as: 

Vtf-v/, + —= 0 (2.50a) 
oz 

^- + vu • Vv/, + w^r +UxvH = -V//p + V2v// (2.50b) 
at oz 

—= + \H • Vu; + w— = --£ ~ P9 + V2w 2.50c) 
dt oz oz 

^l+vH-Vp + w^- - w = V2/5 (2.50d) 
dt oz 
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where subscript H indicates horizontal (e.g., v# = (u,v)), w is vertical velocity, all other 
term are as defined above. 

Nondimensionalization of the equations of motion provides insight to the relative impor- 
tance of each term. Nondimensional versions of equations (2.50) are presented by several 
authors, including Billant and Chomaz [2000a], Lilly [1983], Riley and Lelong [2000], Riley 
et al. [1981]. As mentioned above, stratification typically suppresses vertical motion, which 
leads to different vertical and horizontal scales. Following the scaling arguments of Riley 
et al. [1981], choose the following length, horizontal velocity, and time scales: 

XH ~ LH Z ~ Ly v# ~ U t ~ Li-i/u 

Lv -     U  2 _ ~2 .     _   U2 

o = ^— w ~ —r p ~ pJU p ~ p0- 
LH a gLv 

with Froude number F = U/(NLy). The resulting nondimensional continuity, horizontal 
momentum, vertical momentum, and density equations of motion then become [Riley and 
Lelong, 2000]: 

V„-<7// + F2^ = 0 
oz 

TT:V// + vw • V//vw + F w—-uH + —e2 x v// 
at oz Ro 

aF(w + v»v'" + F,"8rJ 

(2.51a) 

-V//y;+^—V2
V// az Re 

(2.51b) 

dp             F2    - 
oz            Re 

(2.51c) 

% + v„ • Vp + F2u;^ -w= ^-1-V2p (2.51d) 
at oz a1 ScKe 

where Re = UL/u is a Reynolds number based on energy containing length L, Sc = u/k 
is the Schmidt number, and Ro = UfL is the Rossby number. As stratification becomes 
important (F < C?(l)), all the terms with vertical velocity w diminish in importance and can 
be neglected. Evidence of this diminished vertical scale of motion is seen in the formation 
of horizontal "pancake eddies" in numerous numerical and experimental studies (examples 
are given in the sections on turbulence in wakes and grid turbulence). Equations (2.51) are 
often referred to as the low Froude or stratified turbulence equations. 

2.1.8    Length Scales in Stratified Flows 

The smallest scale of turbulent motion is taken as the familiar Kolmogorov length scale 

£3\ 4 
Lk = ( yj (2.52) 

where v is kinematic viscosity and e is kinetic energy dissipation rate. Lk is taken as the 
smallest size of turbulent motion before being dissipated into internal energy (heat). At this 
small scale the length is typically assumed to be isotropic regardless of density stratification, 
although isotropy is disputed by Smyth and Mourn [2000b]. 

Buoyancy tends to affect'the larger vertical scales of motion. The largest scale of turbu- 
lent motion before buoyancy inhibits vertical motion (or the largest scale at which turbulent 
overturning can occur) is the Ozmidov or overturning scale: 

L0=(|V, P.53) 
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where N is the Brunt-Vaisala (buoyancy) frequency: 

V    Pooz 

L0 is derived in [Ozmidov, 1965] by finding the length such that buoyancy and inertial scales 
are equal. L0 is typically applied to flows with no mean shear. 

If a flow is subject to a mean shear, the Corrsin scale is the largest scale at which the 
flow is unaffected by the shear, defined as: 

where 5 is a measure of the applied shear. 
Another measure of the overturning length is the Thorpe scale, Lt (Thorpe, 1977). It is 

computed by reordering the fluid elements such that the vertical density profile is statically 
stable. Lt is then taken to be the rms of the distance d each element was moved to make 
the density profile stable. 

lt = {d2Y=drms (2.55) 
A measure of the distance a fluid particle could be displaced if all its vertical kind ic 

energy were converted to potential energy is the buoyancy scale L^,: 

N 
(2.5G) 

where tDrms is the rms vertical velocity. Lb is shown to be closely proportional by Smyth 
and Mourn [2000a], and is said to be an upper limit of LL [Mourn, 1996]. 

2.1.9     Additional Nondimensional Parameters in Stratified Flows 

The Richardson number is commonly defined in stratified flows. Two common Richardson 
number definitions exist. The bulk Richardson number is simply the inverse F2, and is a 
description of the overall influence of gravity on the flow. The local Richardson number is 
more commonly used, and is defined as: 

N2 

Rii = —-     . 
{dU/dz) 

Rii is thus a ratio of buoyancy force to shear forces in the flow. As Rii decreases, the flow 
is subject to shear instabilities. A common criterion used is Ri] < ^ for Kelvin-Hehnholtz 
instability. 

The buoyancy Reynolds number is defined by taking the ratio of Lc to L^ [Gibson, 1980, 
Gregg, 1987, Smyth and Mourn, 2000a]: 

~     i 

\Lk/      idsr2 

L0 is the maximum length at which eddies can vertically overturn before being affected by 
buoyancy [Ozmidov, 1965, Smyth and Mourn, 2000a], while L^ is the maximum length scale 
that occurs before energy is dissipated via viscous effects. Reb can be seen as a measure of 
the "bandwidth of length scales available to turbulence" [Gregg, 1987]. When Reb ~ O(l), 
L„ » Lk and vertical overturning (3D turbulence) does not occur [Riley and Lelong, 2000]. 
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Chapter 3 

Taylor-Green Simulations 

This chapter contains results of numerical simulations initialized with Taylor-Green vortices 
and a linear density profile (i.e., uniform vertical density gradient). An overview of the 
Taylor-Green vortices is first given, followed by descriptions of the equations of motion and 
numerical method. Results are then presented. 

3.1     Overview 

Direct numerical simulations (DNS's) of flows initialized with Taylor-Green vortices were 
analyzed. The stratification of the flow is constant in time, and there is no ambient shear 
(i.e., decaying turbulent flow). Taylor-Green vortices were chosen because they can be 
considered idealizations of flows resulting from laboratory experiments in which a rake is 
pulled through a continuously stratified tank [e.g., Fincham et al.. 1996, Fraud et ah, 2005]. 
Note, however, that our simulations are conducted with Schmidt number = 1, vs. SCT = 7 
for water. Briefly, the initial condition consisted of Taylor-Green vortices plus broad-banded 
noise with a level approximately 10% of the Taylor-Green vortex energy. The Taylor-Green 
vortices satisfied the following mathematical form: 

Vtg = Ucos(kz) [cos(kx) sin(Ky), — sin(Kx) cos(ky), 0] 

where U determines the initial velocity scale, and L = \/k determines the length scale for 
this field. Thus, for all simulation results, velocities are nondimensionalized by U, lengths 
by L, and time by L/U. The Froude number and Reynolds number characterizing the 
simulations are defined respectively as 

2TTU      n UL ,„   . 

Simulations were run with nominal Froude numbers (FL) of 2 and 4, and nominal 
Reynolds number (RejJ between 200 and 9600. A summary of the different cases is given 
in Table 3.1. As described in Riley and de Bruyn Kops [2003], the simulated flow exhibits 
many characteristics of stratified turbulence. The horizontal length scales grow, and the 
vertical length scales decrease in time. This, combined with decoupling of the horizontal 
motions in the vertical direction, leads to the formation of horizontal "pancake" vortices. 
This behavior is evident after a dimensionless time, t, of about 15. In this study the focus 
is on time t = 20, when the two-dimensional character of the flow is strong but the flow is 

25 
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Notation FL ReL    Sc      Nx Ny Nz 

F2R2 2 200     ] .      256 256 128 
F2R4 2 400     ] [       256 256 128 
F2R8 2 800     1 L      256 256 128 
F2R16 2 1600     ] L      256 256 256 
F2R32 2 3200     ] L      512 512 256 
F2R64 2 6400     ] L      768 768 384 
F2R96 2 9600     ] I     1024 1024 512 
F4R2 4 200     ] 256 256 128 
F4R4 1 400     ] I      256 256 128 
F4R8 •t 800    : I      256 256 256 
F4R16 1 1600 L      256 256 256 
F4R32 1 3200 I      512 512 256 
F4R64 4 6400 L      768 768 384 
F4R96 4 9600 I     1024 1024 512 

Table 3.1: Conditions for simulations of quasi-horizontal vortices. Nx, Ny, and Nz are the 
number of grid points in each direction. 

also still very energetic. In particular, the relationship between kinetic energy dissipation 
rate and vertical shear, the definition of horizontal length scale, and parameterization of 
turbulence are examined. 

The Taylor-Green initial condition and the periodic boundary conditions result in either 
two or four planes (depending on the size of the numerical domain) of maximum shear and 
the same number of planes of minimum shear. This is different from laboratory experiments 
or in natural settings (e.g., atmosphere and ocean) in which the number and spacing of 
planes of high and low shear adjusts to the flow conditions. As a consequence of this 
prescribed spacing, volume averages of shear and dissipation rate are difficult to interpret. 
Here we consider only the planes of maximum shear (either two of four) and denote the 
average over these planes by an overbar. 

3.2     Equations of Motion 

The flow fields are assumed to satisfy the incompressible continuity and Navier-Stokes 
equations subject to the Boussinesq approximation. Also, for better understanding of the 
underlying physics, the simulations are performed in a non-rotating frame of reference (i.e., 
the Coriolis term has been neglected since the simulation length scale is small compared to 
the scales acted upon by Coriolis forces.) Thus, the governing equations are those of (2.46) 
with no Coriolis term. In nondimensional form these equations are written as: (c.f. (2.46)): 

V-v = 0 

_+v.Vv = 
Po 

2TTY 1   „2 

dp yy dp    _ 1 2 
dt dz      ScReL 

(3.2a) 

(3.2b) 

(3.2c) 
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Here v = (u, v, w) is the velocity vector, p and p are the density and pressure deviations 
from their ambient values, ez is a unit vector in the vertical (z) direction, Sc = v/D is 
the Schmidt number (where D is the mass diffusivity), and FL and ReL are Reynolds and 
Froude numbers as defined in (3.1). 

3.3 Numerical Method 

The equations of motion are solved using a pseudo-spectral technique. The boundaries are 
taken to be periodic, allowing trigonometric, evenly spaced interpolation points and easy 
calculation of spatial derivatives via Fast Fourier Transform (FFT) [Trefethen, 2000]. The 
equations were advanced in time using a third-order Adams-Bashforth scheme with pressure 
projection (fractional step) method. Briefly, the pressure projection method is a two step 
method to solve for the velocity field. First, the velocity fields are advanced in time without 
the pressure term. Then, with the condition of incompressibility, pressure is expressed as a 
Poisson equation in terms of the newly calculated velocity fields. The Poisson equation is 
then solved for pressure, then the value obtained for pressure is used to modify or "correct" 
the velocity fields. Further discussion of the pressure projection method can be found in 
Perot [1993] and Chang et al. [2002]. 

In order to eliminate the majority of aliasing errors, a spherical wave-number truncation 
of approximately 15/16 Kmax, with nmax the maximum wave number in the discrete Fourier 
transforms, was used. The momentum equation was advanced in time with the nonlinear 
term expressed in vorticity form, while the alternating time-step scheme suggested by Kerr 
[1985] was employed for the density field to approximate the skew-symmetric form of the 
non-linear term and thereby minimize aliasing. A skew-symmetric matrix is one in which 
the eigenvalues are all pure imaginary. This implies the non-linear term advects without 
causing growth or decay, and will not cause the model to fail. [Boyd, 2001, pg.213] 

3.4 Simulation Results 

3.4.1     Relation between vertical shear rate and kinetic energy dissipation 
rate 

The vertical velocity in case F2R32 at four different times is shown in Fig. 3.1. The white 
bar in each figure connects two material points that are tracked in time. At t = 17.5 the 
flow is fairly quiescent, but by t = 20 a turbulent patch has begun to form in the vicinity 
of the white line. This patch continues to develop through time 22.5. 

By slicing the domain vertically through the white line, the dynamics of this particular 
instability can be studied. In Fig. 3.2, the horizontal velocity in the direction of the white 
line is plotted for each of the four times. The figures are colored so that black indicates 
flow to the left and white indicates flow to the right. The gray bars above each panel 
in Fig. 3.2 correspond to the white lines in Fig. 3.1. At t = 17.5 there is little shearing 
action in the region of the gray bar, but by t = 20 moderate shearing has developed. By 
t = 21.5 the shearing is strong, and Kelvin-Helmholtz roll-ups are apparent. The roll-ups 
are even more apparent in the corresponding slice through the total density field at t = 21.5, 
published in de Bruyn Kops et al. [2003]. This type of qualitative analysis was repeated for 
a number of the simulation cases. While it was not always possible to find a clean Kelvin- 
Helmholtz roll-up associated with each turbulent patch, high vertical shear accompanied the 
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turbulence in all cases observed. Although this analysis does not provide a definitive answer, 
it strongly suggests vertical shear as the dominant mechanism for triggering turbulence in 
these simulations. 

When developing theories and models for turbulence subject to strong stable stratifica- 
tion, it is common to assume that vertical shear of the horizontal motions causes most of 
the dissipation rate of kinetic energy, i.e., 

uS2 ^e . (3.3) 

Here e = 2ve{jeij is the kinetic energy dissipation rate, e^ is the symmetric part of the 
viscous stress tensor r^, and S2 = (du/dz)2 + (dv/dz)2 is the square of vertical shear. For 
instance, Billant and Chomaz [2001] and Riley and de Bruyn Kops [2003] make assumption 
(3.3) in order to estimate a vertical length scale; Shih et al. [2005] make this assumption in 
order to relate the buoyancy Reynolds number Reb, to the ratio of Reynolds and Richardson 
numbers. Support for (3.3) comes from numerical simulations, [e.g., Herring and Metais, 
1989], and laboratory experiments that span a wide range of Reynolds numbers. In par- 
ticular, the experiments of Fincham et al. [1996] show that vS2

/E « 0.9, a result that is 
verified experimentally by Praud et al. [2005]. 

Analysis will begin by considering v (52) / (e) for each of the cases in Table 3.1, shown 
in Figure 3.3, and each component (e)-- as a fraction of e, shown in Figures 3.4(a) and (b). 
Here (•) denotes a volume averaged quantity. For ReL = 800 at both FL = 2 and 4, the 
results are entirely consistent with those of Fincham et al. [1996] and Praud et al. [2005], 
in that vertical shear accounts for about 90% of the dissipation rate. The horizontal shear 
terms are very small, as are the contributions to e of the normal strain rates. There is some 
dissipation due to vertical motion, particularly in the FL = 4 case, but it is small. 

For ReL = 200, the flow conditions are markedly different with v (S2) / (e) w 0.6. The 
contributions of each component of (e) suggest a two-dimensional Stokes-like flow in which 
vertical motion is almost completely inhibited by gravity for both Froude number cases and 
the isotropic character of the pressure force causes all of the horizontal contributions of (e) 
to approach their isotropic values (i.e., the flow never becomes turbulent). Note that in 
isotropic turbulence, the contributions to (e) of the diagonal terms in the strain rate tensor 
are 13.3%, while those of the off-diagonal terms are 10%. 

For Reynolds numbers above 800, the relative contributions of each component of (e) 
change rapidly with increasing ReL- Physical reasoning suggests that all components of 
(e) that depend on vertical velocity will increase as the flow becomes more turbulent and 
the vertical velocity increases. Furthermore, such reasoning suggests that this phenomenon 
will occur at lower ReL for the FL = 4 cases than for the FL = 2 cases since the vertical 
motions are more strongly suppressed by gravity at lower Froude numbers. The simulation 
data is consistent with this reasoning in that (£)33 / (E) increases with Reynolds number 
for both FL = 2 and 4 and is higher for the FL = 4 cases except at the highest Reynolds 
numbers. Considering this result alone, we might conclude that the simulated flow is insuf- 
ficiently stratified for (3.3) to hold for the higher Reynolds number cases. Note, however, 
the curves for the (e)11 and (e)22 in Figures 3.4(a) and (b). The significant rise of these two 
contributions to (e) shows that it is not just increasing vertical motion that causes vS2/ (e) 
to decrease to about 0.4 at ReL = 9600. Dissipation due to normal strains contributes 
significantly to the total dissipation rate at higher Reynolds numbers. 

While it would be convenient if v (S2) / (s) « 1 for all cases of strongly stratified turbu- 
lence, for most modeling and theoretical applications introduction of an order one constant 



3.4.   SIMULATION RESULTS 29 

t=17.5 t=20 

Figure 3.1: A horizontal slice through the vertical velocity field at the plane of maxi- 
mum shear at four different times in a Taylor-Green simulation with Froude number 2 and 
Reynolds number 3200. The white bar connects two material points that move with time. 
The points start in a region of relative calm, experience an instability, and end up in a 
turbulent patch. 
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t=17.5 

t=20 

t=21.5 

t=22.5 

Figure 3.2: The horizontal speed on vertical planes aligned with the white bar in Fig. 3.1. 
Black indicates negative and white indicates positive. The gray bar above each panel 
corresponds to the white bar in Fig. 3.1. 

Figure 3.3: Ratio of (v (S2)) / (e) vs. ReL. FL = 2 (•) : FL = 4 (I 
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Figure 3.4: Contribution of the six independent terms of (e)i,- normalized by total (e) vs. 
ReL for (a) FL=2 and (b) FL=4. The horizontal dashed lines mark the theoretical values 
for the normal and shear components in isotropic turbulence. 

would be acceptable provided that S2 and e were well correlated. This correlation is con- 
sidered in Figure 3.5 in which local values on the planes of high shear of vS2 are plotted 
versus e for two different simulation cases. In the top panel of the figure, it is apparent that 
for ReL = 800, not only are the square of the shear and the dissipation rate well correlated 
but there are very few points far from the diagonal. For this case, relation (3.3) is not only 
excellent on average, it is excellent locally in regions of high shear. In the bottom panel 
of the figure, the results for ReL = G400 show that relation (3.3) is not very good even to 
within a multiplicative constant for this case. 

3.4.2    Buoyancy Reynolds Number 

In order to understand why the laboratory experiments conducted over a wide range of 
Reynolds numbers consistently show v (52) /e ~ 0.9 while our simulations support this 
relationship only for a fairly narrow range of Reynolds numbers, we consider now both 
laboratory and simulation data in terms of the buoyancy Reynolds number (2.57). This 
quantity has been used extensively in the parameterization of stratified turbulence, [e.g., 
Gibson, 1980, Gregg, 1987, Imberger and Boashash, 1986, Smyth and Mourn, 2000a] and 
can be derived from the ratio of the Ozmidov scale (2.53) and the Kolmogorov scale (2.52). 

For each of the simulation cases, the planar average buoyancy Reynolds number, (Reb) = 
(e) /vN2, is plotted versus ReL in the top panel of Figure 3.6. Since, as shown by Riley 
and de Bruyn Kops [2003], the dissipation rates for all the cases are about the same, (Reb) 
is very nearly proportional to ReL- Note that (Reb) is computed at t = 20, whereas ReL 
is a nominal value for the simulation. In the bottom panel of the same figure, v (S2) j (e) 
is plotted versus (Reb) for all the simulation cases. When (Reb) > 1, the data for both FL 

cases collapse very well onto a common curve that decreases rapidly with increasing (Reb). 
In the range 0.1 < (Reb) < 1, there is more scatter in the data but high values of v (S2) / (e) 
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Figure 3.5: Scatter plot of vS2 vs. e for (a) FL = 2, ReL = 800 and (b) FL = 2, ReL = 6400. 

are observed, consistent with results of other numerical simulations [e.g., Smyth and Mourn, 
2000b] as well as the laboratory results of Fincham et al. [1996] and Praud et al. [2005]. 

For the case of Fincham et al. [1996] with Re^ = 6100 and TV = 2.3 rad s_1 used in 
their Figure 8 to show the contribution of vertical shear to dissipation rate, the buoyancy 
Reynolds number is estimated to be about 0.2 at early time. For the case of Praud et al. 
[2005] with ReM = 9000 and FTM = 0.09 used in their Figure 25, the buoyancy Reynolds 
number is estimated to be about 0.1 at early time. These values of Reb correspond roughly 
to where v (S2) / (e) is maximum in Figures 3.6 (a) and (b). 

In both laboratory experiments, however, e decreases by several orders of magnitude 
over the duration of the experiment with a corresponding decrease in buoyancy Reynolds 
number. Neither Fincham et al. nor Praud et al. report a decrease in vS2je as the 
experiments evolved. This suggests that the behavior at low (Reb) observed in Figures 3.6 
(a) and (b) is due to the simulated flows being laminar. Based on other statistics, we know 
this to be the case. It is likely, based on physical reasoning and the two sets of laboratory 
data, that vertical shear will account for 90% of the dissipation rate when (Reb) is order 
one or less provided that the flows are turbulent (of course, with (Reb) < 1, turbulence is 
in the the quasi-2d sense). 

3.4.3     Horizontal Length Scale 

Riley and de Bruyn Kops [2003] postulate a length scale, Lh, for horizontal motions in order 
to define a horizontal Reynolds number, Re^, and a horizontal Froude number, F/j, for their 
F^Re/j scaling. How Lh is to be computed for practical use is not discussed in that paper, 
but their derivation of the F^Re/, scaling implies that Lh can be defined in terms of Uh and 
e (i.e., Lh is an advective length scale). Similarly, when Reb is related to the square of a 
Froude number and a Reynolds number [e.g., Ivey and Imberger, 1991, Shih et al., 2005], an 
advective length scale, u^.ms/e, is assumed. Therefore, it is of interest whether the advective 
length scale is appropriate for the large scales of motion in the current simulations. 
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Figure 3.6: (a) (Reb) vs. ReL: (b) v (S2) / (e) (lower plot) for FL = 2 (•) : FL = 4 (•) 

There is a strong theoretical argument that L/j should be related to ?//, (or urms) and 
e. With appropriate spatial and temporal averaging, advection can be expected to balance 
t he viscous dissipation rate with an advective time scale ta ~ Lfjuh. If this is the case then 

d_l 
dt2' 

:Ul e ~ 
Lh 

(3.4) 

or ufje.   While this analysis is generally accepted for theoretical estimates of the 
length scale, for practical application in simulations or laboratory experiments it may not 
be sufficient for several reasons. First, advection of horizontal kinetic energy only balances 
viscous dissipation when the horizontal and vertical kinetic energies and the potential energy 
are in equilibrium or when a carefully chosen interval in time is chosen for averaging. Second, 
horizontal kinetic energy is convected in the vertical direction and u\/e varies by several 
orders of magnitude between planes of high and low shear. As a consequence, L/t depends 
strongly on the definition of the spatial averages used in its computation. 

To illustrate the difficulty in using u\/e for analyses of the current simulations, we 
consider an average advective length scale 

(La)H 
MB 

(3.5) 

computed for the planes of maximum shear and plot it versus time in Fig. 3.7 for each 
of the simulation cases. Here {-)H denotes a planar averaged quantity. Averaging in this 
manner is justified by the fact that most of the kinetic energy and most of its dissipation 
rate is associated with the planes of maximum shear, and it is in the vicinity of those planes 
where turbulence occurs. If the spatial average is computed over the entire domain then the 
magnitude of (La)H is smaller but the trend in time is similar. Note that with the the size 
of the numerical domain and the fact that the domain is periodic, the maximum permissible 
value for the horizontal length is 2ir. (La)H is therefore unphysically large for most of the 
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Figure 3.7: Advective length scale from (3.5). 

simulation cases. Furthermore, (La)H varies significantly between the simulations and does 
not grow continually in time, neither of which is consistent with information about the 
large scales of the flow gained from the stream function and energy spectra. It is concluded 
that (La)H is not useful for estimating the size of the horizontal motions in the current 
simulations. 

In order to arrive at an appropriate length scale for use with the F^Re/j scaling, we 
consider again the underlying physical justification for that scaling (i.e., that turbulence is 
triggered by vertical shearing between quasi-horizontal vortices). Based on this model, the 
appropriate length scale is the size of the horizontal vortices. From the horizontal stream 
function in Fig. 3.8, it is apparent that the size of these vortices increases from one quarter to 
one half the size of the computational domain between t = 0 and t = 20. A straightforward 
approach to computing Lh is to relate it to the average of the autocorrelations of u in the 
x'-direction and of v in the y direction, 

_ 1 (u{x + r)u{x))h      l(v{y + r)v(y))h 

2 (u)h 2 (v)h 

R(r) is plotted in Fig. 3.8 for case F2R32 at two different times. 
The horizontal length scale is defined in terms of the autocorrelation function as 

(Lh)H = r    where    R(r) = 0 . (3.7) 

In Figure 3.9, (Lh)H from (3.7) is plotted versus time for cases with high and low (Ret)/(. 
The length scale increases with time as expected and never exceeds the limiting value of 
27T. Unlike with (La)H, there is little difference between the cases, which is consistent with 
information gained from the streamfunction and from spectra that indicate little difference 
in the evolution of the large scales between the different cases. Furthermore, (Lh)H grows 
monotonically in time as expected. 

Also shown in Fig. 3.9 is the RMS horizontal velocity, the horizontal Froude number, 
and the horizontal Reynolds number. Since Uh decreases and (Lh)H increases with time, F^ 
decreases in time. This data supports the theoretical argument by Riley and de Bruyn Kops 
[2003] that stably stratified flows with no energy input will eventually enter the strongly 
stratified regime even if the initial Froude number is much greater than unity. Note also 
from the figure that the Reynolds number increases as the flow evolves, reminiscent of two 
dimensional turbulence. 
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Re=3200 F=2 t=0 Re=3200 F=2 t=20 

Figure 3.8: Horizontal stream function and corresponding autocorrelation function R(r) for 
a plane of maximum shear at time t = 0 (left) and t = 20 (right). i?(r) is defined in (3.6) 
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or  0.1 

Figure 3.9: (Lh)H, (ith)H, F/j, and Re/i versus time for two cases with low (Ret,)w and two 
cases with high (Ret,)H. 
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<Ri>» 

Figure 3.10: F^Re^ versus (Ri)//. The solid line is the least-squares linear fit to the log of 
the quantities. The circles and squares represent the FL = 2 and FL = 4 cases, respectively. 

3.4.4    Parameterization of Turbulence 

Having determined a suitable length scale from which to compute F/j and Re/, in §3.4.3, we 
now consider the F^Re/, scaling, its relationship to Ret,, and its utility for parameterizing 
turbulence in the simulated Hows. Recall that the analysis in Riley and de Bruyn Kops 
[2003] relates the Richardson number, Ri, to 1/F^Re/, so that if F^Re/, > 0(1) then Ri can 
be expected to be order one or less. Thus, a flow with F^Re/, > 0{\) will be susceptible to 
Kelvin-Helmholtz instabilities and turbulence can be expected to develop. To investigate 
this argument, we examine the assumption that Ri ~ 1/F^Re/i by plotting F^Re^ versus 
(Ri)// in Fig. 3.10 for all of the simulation cases. Here (Ri)// is the planar averaged gradient 
Richardson number: 

(Ri)// 
p0   \dz        dz J 

\di) + {ml 
(3.8) 

The results are encouraging because the relationship Ri ~ 1/F^Re/i holds over a two decade 
range of values. There is some scatter in the data, but there is no tendency to deviate 
from the relationship even at the extreme values of Ri. In fact, the stronger relationship 
Ri s=s 1/F^Re/t is justified for the current simulations. The fact that F^Re/j is a good 
estimate for the Richardson number combined with the conclusion from §3.4.1 that shear 
instabilities are the major cause of turbulence in the simulations leads us to conclude that 
F^Re/i is a useful parameter for predicting if turbulence will occur in these flows. 

As noted in the introduction of this paper, the buoyancy Reynolds number can be 
written in terms of a Reynolds number and the square of a Froude number. This leads to the 
question of whether (Ref,)ft and F^Re^ are related quantities, and in Fig. 3.11 one is plotted 
versus the other for all the simulation cases. It is evident that the two parameterizations 
are equivalent to within the scatter of the data and an order one multiplicative constant, 
and that Riley and de Bruyn Kops [2003] arrived at a new physical justification for why Ret, 
has proven useful for parameterizing turbulence in stably stratified flows. This alternative 
justification may help in understanding the conditions under which Reb can be used to 
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Figure 3.11: (Reb)w versus F^Re/j. The solid line is the least-squares linear fit to the log of 
the quantities. The circles and squares represent the FL = 2 and FL = 4 cases, respectively. 

parameterize turbulence, and how the parameterization might be improved. 
In addition to providing an alternative physical explanation for the occurrence of turbu- 

lence under stable stratification, the F^Re/j scaling has several attractive features compared 
with Ret,. At the theoretical level, it involves two dimensionless groups, which is the number 
predicted for this problem by the Buckingham Pi theorem. This suggests that turbulence pa- 
rameterization be considered in the two dimensional Fronde-Reynolds number space rather 
than in the one dimensional domain of a modified Reynolds or modified Froude number. 
At the practical level for numerical and laboratory experimentalists, F2Re can be used a 
priori to estimate if a flow can be expected to be sufficiently turbulent to be interesting for 
understanding oceanic and atmospheric flows. 



Chapter 4 

Vortex Street Simulations 

This chapter contains results of numerical simulations initialized with a von Karman vortex 
street and a hyperbolic tangent density profile. An overview of the simulations are given, 
followed by the kinetic and potential energy equations for non-uniform density stratification, 
numerical considerations, and simulation results. Emphasis is be placed on the effect of 
assuming a density gradient that is uniform in height when it may not be uniform, such 
as in a thermohaline staircase. Note that in keeping with the convention throughout this 
document, dimensional quantities are denoted with a tilde (:), nondimensional quantities 
have no marking. 

4.1     Overview 

High resolution direct numerical simulations (DNS's) of a perturbed von Karman vortex 
street were performed, simulating the resulting flow of an object's wake (Figure 4.1). The 
initial conditions consist of three vortex pairs and low-level noise. Each simulated flow was 
conducted with no ambient shear and density stratification that was held constant in time, 
to represent the persistent stratification naturally found in a thermohaline staircase (§1.2.5) 
or atmospheric layer transition (§1.1.1). The wake has zero mean velocity, which is similar 
to that generated by a self-propelled object (although Meunier and Spedding [2006] note 
that it is very difficult to obtain a truly momentumless wake in a stratified fluid). Each 
vortex was initialized with the following velocity profile [de Bruyn Kops et al., 2003]: 

~ ~ r 
VQ = Uz—exp sech2 ( •=- ) (4.1) 

where U is the initial velocity scale, fm is a radial length scale, Sy is the vertical length 
scale, and r = sjx1 + y2 and z are the radial and vertical position. The separation distances 
between vortex centers in the x and y directions were sx = 2fm and sy = 1.5fm. 

In creating the initial flow condition, noise was applied to the vortex horizontal and 
vertical length scales fm, Sy, and vortex separation distances sx, sy; each was randomly 
perturbed up to 5% of its corresponding scale. For example, the vertical scale for each 
vortex was calculated as 5u + 0.05X6u, and the y positions for the positive vortices were 
determined as Ly/2 + sy/2 + 0.05As,,, where A is a [-1 1] uniformly distributed random 
number and Ly is the spanwise (y) domain width. 

39 
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Figure 4.1:  Center plane of vortex street initial condition.   Arrow length represents fluid 
velocity. 

The ambient density p(z) was imposed with a hyperbolic tangent vertical profile: 

Ap     ,  /-. 
p(z) = — tanh I j (4.2) 

from which the density stratification dp(z)/dz is obtained: 

dp(z) 
dz 

(4.3) 

where Ap = ptop — Pbottom is the difference in density between the top and bottom of the 
numerical domain, z is the vertical position and 5P is a vertical length scale of the density 
profile. Since the stratification is a function of vertical height, the buoyancy frequency N will 

also be a function of height. It will be convenient to define a global buoyancy frequency N to 
describe the average ambient density stratification Ap/Az = (ptop — Pbottom)/(ztop —^bottom), 
as well as a local buoyancy frequency N(z): 

~2 
N     = 

N2(z)    = 

PoAz 

9 dp{z) 
po   dz 

(4.4) 

(4.5) 

4.2     Theoretical Considerations 

4.2.1     Kinetic Energy 

The kinetic energy equation is formed by taking the dot product of the velocity vector v 
and the momentum equation (2.46b) (in which the Boussinesq approximation is made and 
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gravity is the only body force). This yields (in indicial notation): 

9 ~~ dEk •   . dEk .  dp 

d£ ax,- dxi     po 

djUjTjj) 

dxj 

duj 
1 dij 

(4.6) 

Here JS/t = 1/2 (uiUj) is the kinetic energy per unit mass, Xj is the direction vector, and 
Tji is the viscous stress tensor for a Newtonian fluid. Equation (4.6) can be broken into 
horizontal (i = 1,2) and vertical (i = 3) contributions (denoted with subscripts H and V 
respectively): 

0Ek 

dt 

dE„ 
di 

8EV 

di 

dEH      dEv 

dt di 

-TH -?H + WH-SH-4> 

-TV - Pv ~ B + Wv - ev + 4>, 

(4.7) 

(4.8) 

(4.9) 

where 

Eh=^ 

TH = v • VEh 

p   — uvuv j-/v —       2 

TV = v • V£„ 
P# = uH • V///3 

en = 2veHjenj ey = 2ueyjevj 
<j> = 2z>(ei3ri3 + §23^23) B = S-puz 

In the above equations v = (u,v,w) is the velocity vector, UH = {u,v) is the horizontal 
component of the velocity vector, e = 2ve.ije.ij is the dissipation rate of kinetic energy, 
0 = 2z>(ei3f i3 + e23r23) is a coupling term between vertical and horizontal kinetic energy, 
iij and fy are the symmetric and anti-symmetric tensors of ^4^-: 

&ii 

i] 

I 
2 

1 /du 
2 lax 

diii      diij 

dij      dii 

d.i-j 

(4.10) 

(4.11) 

Nondimensionalization 

Using the scaling outlined in §4.4.1 below, equations (4.8) and (4.9) can be written in 
nondimensional form as: 

dEH 

dt 
dEv 

dt 

=      -TU-PH + W„-EH-<t> 

=     -TV - Py - B + Wy - ey + <f>. 

(4.12) 

(4.13) 

where 
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EH = •i 

T„ = v • VEH 

PH = UH • V//p 
11/       _      1     ^(UHTj//) 
w» ~ Hi;    ax/ 

4> = ^;(ei3?*i3 + e23T-23) 

Ev = ^f^ 
Ty = V • V£y 

B=(f?)V*, 
and Rer, Fr, Sc are defined in (4.28). Further discussion of each term is given in the results 
section of this chapter. 

4.2.2    Available Potential Energy for Non-uniform Density Stratification 

Potential energy in a geophysical setting usually involves the concepts of available and 
background potential energy, first suggested by Lorenz [1955]. He noted that in order to 
convert the total potential energy in the Earth's atmosphere to kinetic energy, the temper- 
ature needed to reach absolute zero and all mass needed to be located at sea level. Such 
conditions cannot readily occur. (It is estimated that potential energy makes up 25% of 
the total energy (internal + potential + kinetic) in the Earth's atmosphere, while only 2% 
is kinetic energy [Gill, 1982, pg.81]). Instead, the potential energy Ep that is available for 
conversion to kinetic energy is said to be the result of any deviation from a background 
(or rest) potential energy Eb- Eb is a state that would exist if the fluid was adiabatically 
redistributed (i.e., no heat transfer) to a minimum energy state. The available potential 
energy is the total potential energy, V, minus the background potential energy: 

Ep = V-Eb. (4.14) 

Initially, this might seem like a straightforward method for obtaining the available po- 
tential energy in a system. However, while V is typically defined as JJJ ptgz dx dy dz, (where 
Pt = Po + p{z) + p is the total density, equal to the sum of reference, ambient and fluctuating 
components), several methods of obtaining Ep exist. Typically, adiabatic redistribution is 
performed by sorting the density field so that the highest density parcels are in the lowest 
vertical position. The redistributed density field, p*, is then used to calculate background 
potential energy Eb — JJJ p*gzdxdy dz [e.g., Staquet, 2000, Winters et al., 1995]. Another 

related method to calculate Eb is by "Thorpe reordering," [Thorpe, 1977], in which the 
density is also adiabatically redistributed via sorting, but in this case the distance (absolute 
or rms) each fluid element traversed, rj, to obtain the minimum energy state is used to cal- 
culate the background potential energy JJJ ptg(z — r))dxdydz [Smyth and Mourn, 2000a, 

Smyth et al., 2001]. A third method of obtaining Eb, suggested by Tseng and Ferziger 
[2001], involves taking the probability density function (PDF) of pt, which can be thought 

of as a method of sorting the field into a minimum energy state. With the PDF of pt, the 
vertical position of each parcel in a minimum energy state can be found, then integrated 
over the domain height to find Eb- 

While the above methods for obtaining Eb rely on sorting methods, thus avoiding the 
need for derivatives of density stratification, there are several drawbacks. First, as pointed 
out in Winters et al. [1995], sorting methods can only provide an estimate of background 
potential energy, since the vertical position is discretized by the numerics, where in a physical 
system no such discretization exists. Second, since simulations are now becoming large (it 
is not uncommon for simulations to be the order of 1 billion gridpoints), sorting or creating 
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a PDF of a large field can take too long to be practical if values are to be obtained while 
the simulation is running. Lastly, to gain insight into Eulerian energetics, it is desirable to 
calculate Ep on a local basis (i.e., at each grid point), whereas the above methods are only 
defined on a volume average basis. A method for computing Ep on a local basis is derived 
below. 

Available potential energy for uniformly stratified flows is usually defined locally as [e.g., 
Gill, 1982, p.140]: 

*>=-\wfr/> (4-15) 

where p(x, y, z, t) is the fluctuation from the undisturbed density p, and dp/dz is constant 
in space and time. When density stratification is non-uniform, the definition of potential 
energy is more complicated than for uniform stratification, and (4.15) will not be accurate. 
This complication arises from the fact that the derivative of the stratification is non-zero 
(i.e., d2p(z)/dz2 / 0) [Holliday and Mclntyre, 1981]. A method to obtain an accurate 
expression for potential energy in an incompressible fluid with a non-uniform density strat- 
ification was put forth by Holliday and Mclntyre [1981], who begin by defining available 
potential energy as the integral of the displacement of a fluid particle from its undisturbed 
state (£), 

EP(z, 0 = ~J tt-j-J(~z ~ CR , (4.16) 

where (:) denotes a dummy integration variable. Since the numerical simulations involve 
a field of density fluctuations p(x,y,z,t), it is advantageous to write Ep in terms of p(z) 
and p(x, y, z, t), rather than z and £. Conversion to p(z) and p(x, y, z, i) is possible because 
p(x, y, z, i) contains Lagrangian information required to compute (4.16^. Converting to p(z) 
and p(x,y, z.i) can be achieved by first defining a potential function <£{} as 

${p{z)}=~gz. (4.17) 

Provided the undisturbed stratification p(z) is stable everywhere, (4.16) can be written in 
the following form [Holliday and Mclntyre, 1981]: 

hip ^{p{z)+'p}-4>{p{i)}   dp, (4.18) 
it 

where p is a dummy integration variable and the spatial dependence (x, y, z) of p is implied. 
For the specific hyperbolic tangent p(z) given in (4.2), (4.17) can be shown to be 

${p{z)} = -9d>arctanh (^ ) , (4.19) 

where Q = Ap/2, obtained from (4.2), is introduced simply for notational purposes. Substi- 
tuting (4.19) into (4.18) yields the following expression for Ep (where the spatial dependence 
of p, p is implied): 

Ep = g8, ~6~P \>^J?-CP + P? {p + p)arctanh ( f_ ) + 6- In (l- 
vy - PP- p2/   2   v 

The time derivative of Ep can be found by use of the chain rule: 

dEp      dEp dp 

~df     ~Wdt' 

g2 - p2 (4.20) 

(4.21) 
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Note the dEp/dp is the opposite of the integral (4.18).  Tims, for the hyperbolic tangent 

stratification studied here, dEp/dt is 

dE. 

dt 
?- = <?<5parctanh UP 

Q1 -PP- P 

dp 
21 di' 

Substitution of the density trasoport equation (2.46c) into (4.22) yields: 

dE, 

dt 
~   = 5<^parctanh 

QP 

Q2 -PP- P2 dz 

(4.22) 

(4.23) 

where the material derivative in (2.46c) has been expanded, and the symbol D replaces k 
for the mass diffusivity. 

Equation (4.23) can be written in shortened notation, similar to the kinetic energy 
equations (4.8) and (4.9): 

dE, p _ 

where 

TP    = g$p 

-~gh 

X   =   -g6pD 

dt 

arctanh 

arctanh 

arctanh 

Tp + B-x (4.24) 

QP 

Q2- -Pf>- P2 J 
QP         \ 

Q2- -PP-P2) 

( QP 

J2 - pp- p2 

v-V/5 

~dp{z) 

dz 

V2P 

An interesting question that arises is how does (4.20) differ from the potential energy 
defined by (4.15). This can be seen by expanding (4.20) in a Taylor series of about p = 0. 
With some algebraic manipulation, the first 3 terms of the Taylor series can be shown to 
be: 

EP = 
1 9 I 1 9 p(i ~3       1   9       Q +3/^)      ~4 

;P   -T^T~ -?,, . = -„P 
2p0dp{z)/dz''       3poSpg{dp{z)/dz)2^       12 po Q~52p(dp(z) / dz)*'' 

In the limit of linearized motion (which is typically how (4.15) is derived), terms of order 
greater than p2 are assumed small and neglected, reducing the above equation to (4.15). 

Nondimensionalization    Using the scaling outlined in §4.4.1 below, (4.24) can be written 
in nondimensional form as: 

° =-Tp + B-x, (4.26) 

where 

EP    = 
/2TT 

VFV 

TP    = 
/2TT 

\¥~r 

B    = 
(2ir 

/2TT 
X    = U- 

di 

(p(z) + p)arctanh I - QP 

\Q*-PP-P , + §- 
arctanh QP 

Q2 - PP- P2 
v-Vp 

arctanh QP 

Q2 - PP- P2 
w- 

dp(z) 

1 
arctanh 

VFr/   RerSc 

and Rer, Fr, Sc are defined in (4.28) below. 

Q   - PP- Pl 

- (P(z) ~ P? 
Q2 — p2 
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4.3    Numerical Considerations 

Naturally, it is not sufficient to perform numerical simulations without first performing 
basic numerical checks for adequate spatial resolution, temporal resolution, and domain size. 
Spatial resolution includes both large and small scales. If the simulation is not spatially 
resolved, energy will not transfer to proper scales, usually resulting in an under-calculation of 
kinetic energy dissipation rate. Since the simulations use a spectral code, spatial resolution 
can be verified via an energy spectrum. If the simulation is not resolved temporally, each 
timestep will yield an inaccurate result, and this will affect the energy balance. As the 
simulations will be carried out with a variable timestepping technique, temporal resolution 
can be checked by integrating the left hand side of the kinetic and potential energy equations 
(4.8), (4.23). Finally, the vertical domain size may have an effect on the simulation. If the 
domain is too small, the boundaries may adversely affect the simulation. Each of these 
numerical considerations is examined below. 

4.3.1 Small Scale Resolution 

Small scale motions must be resolved in a DNS to properly simulate the dissipation rate of 
kinetic and potential energy. One method of verifying the resolution of the flow is by means 
of the kinetic energy dissipation rate (e) spectrum. Since e is a small scale process, a well 
resolved simulation will show the magnitude of the kinetic energy dissipation rate spectrum 
to increase with wavenumber (decreasing length scale), indicating e is occurring at small 
scales. Since the flow is initialized with maximum energy on the center horizontal plane, 
this would be a good place to check the simulation resolution, as it is a likely place for the 
simulation to become under-resolved. Figure 4.2 contains a plot of the (nondimensional) 
kinetic energy dissipation rate spectrum of the center plane at t = 10, with Fr = 2.75, 
Rer = 19200. £ = 0.01, which is representative of all vortex street simulations performed 
in this study. In Figure 4.2, e increases with wavenumber up to kx = 112, where the anti- 
aliasing filter causes a sudden drop in magnitude. This result suggests that the simulation 
is well-resolved. Several other horizontal planes (including planes of maximum shear seen 
in Figure 4.11) were examined with similar results. 

4.3.2 Temporal Resolution 

Within the Boussinesq approximation, the mechanical energy equation and momentum 
equations are not independent. Since the momentum equations are numerically integrated, 
the energy equations can provide a check of the temporal resolution. In order to verify 
temporal resolution, the left hand side of the volume averaged kinetic and and potential 
energy equations (eqs. (4.6), (4.23)) are integrated in time using the trapezoid rule and 
compared to the directly computed energy values. Figure 4.3 (a) contains plots of the 
integrated kinetic energy equation vs. calculated energy for simulation £ = 0.01, Fr = 2.75, 
Rer = 19200, while Figure 4.3(b) contains a plot of the relative error between the two. 
The same quantities for potential energy are shown in Figures 4.4 (a), (b). In each plot, 
there is good agreement between the calculated and integrated energy values. Early in 
each simulation, the relative error is « 10~3. The relative error is seen to increase in time, 
and can be explained by noting that as each term in integrated, the cumulative error will 
increase, which will gradually increase the relative error. In addition, data was available 
in s=s 0.25 nondimensional time units, which is a large timestep to be integrating over. 
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w 10° - 

Figure 4.2: (nondimensional) x direction kinetic energy dissipation rate spectrum [e\i] 
the center plane of £ = 0.01, Fr = 2.75, Rer = 19200. 

for 

Also, the integration was performed with a first order trapezoid method for convenience, as 
opposed to a more accurate interation method like 3rd order Adams Bashforth. When the 
simulation was run for 7 consecutive timesteps, the relative error between the integrated 
and actual energy values is ~ 10-5 (Figure 4.5). Again, the increase in error is due to 
the cumulative error added for each timestep integration. These results suggest that the 
simulation is temporally resolved. 

4.3.3    Vertical Domain Size 

When analyzing stratified flows, the behavior of vertical motions is a topic of interest. As 
such, it is important to consider the effect of the vertical domain size on the simulated 
flows. Since the simulations are run with periodic boundary conditions, it is similar to 
having an identical flow domain at each boundary. Thus, flows that occur at one edge of 
the domain can affect the flows at the opposite boundary. The effect of this interaction can 
be seen in Figure 4.6, which contains plots of the horizontal (xy) planar averaged horizontal 
and vertical kinetic energies (EH, Ey) at t = 10 for simulations with nondimensional 
computational domain height Lz = Lzlrm = ±1.5 and ±3. Note that EH is similar for each 
simulation except for the vertical boundaries, where the energy increases at the boundary for 
Lz = ±1.5 as opposed to when Lz = ±3. In the vertical kinetic energy plot, a large double 
peak exists above and below the centerline with Lz = ±1.5, but decreases significantly in 
magnitude with Lz = ±3. Also, an internal wave can be seen in Ey (and to a lesser extent 
in EH) that extends to the boundary with Lz = ±3, but does not exist with the smaller 
domain height. Support for internal wave formation can be seen in Figure 4.18 which is 
consistent with the fact that internal waves can not exist when there is no stratification. 
The differences in Lz can be attributed to the periodic boundary condition, where for the 
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Figure 4.3: Kinetic energy equation balance (left) and relative error between integrated and 
directly computed kinetic energy (right). (•) represents the value of energy at a particular 
time, (-) is the time integration of the right hand side of (4.6). Here F, = 2.75, Rer = 19200, 
£ = 0.01. 
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Figure 4.4: Potential energy equation balance (left) and relative error between integrated 
and directly computed potential energy (right). (•) represent the value of energy at a 
particular time, (-) is the time integration of the right hand side of (4.23). Here Fr = 2.75, 
Rer = 19200, £ = 0.01. 
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Figure 4.5: Relative error between integrated and computed kinetic and potential energies 
for 7 consecutive timesteps, simulation Fr = 2.75, Rer = 19200, £ = 0.01. 

smaller Lz the wave interacts more strongly at the boundaries than the larger Lz. For all 
simulations Lz was chosen to be ±3 to minimize the interaction between boundaries. 

4.4    Methodology 

4.4.1     Equations of Motion 

The numerical method used in the vortex street simulations is the same as the Taylor-Green 
simulations in Chapter 3. Specifically, the fields are assumed to satisfy the Navier-Stokes 
equations subject to the Boussinesq approximation (§2.1.5), and are solved using a pseudo- 
spectral technique with periodic boundary conditions and the pressure-projection method. 
Taking U as the velocity scale, rm as a length scale, fm\Ap/Az\ as a density scale (where 
| • | denotes absolute value), fm/lA as a time scale, and poll2 as a pressure scale (where po 
is the reference density value), the nondimensional governing equations in a non-rotating 
frame of reference are: 

V • v = 0 (4.27a) 

9v 2?r 
pez - Vjo + — V2v 

Rer 
(4.27b) 

dp 
dt 

+ v • Vp w- 
dp(z) 

dz 
I 

RerSc 
V2P (4.27c) 

where v = (u, v, w) is the velocity vector, and p and p are the (nondimensional) density 
and pressure deviations from their ambient values, and ez is a unit vector in the vertical 
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Figure 4.6:  Comparison of horizonal planar averaged horizontal (left) and vertical (right) 
kinetic energy with Lz = ±1.5 and ±3, t = 10. Here Fr = 2.75, Re,. = 19200, £ = 0.01. 

direction. The Reynolds, Froude, and Schmidt numbers are defined as: 

Re,. 
Uf, 

V, 
2TTU 

N~f„, 
Sc=4. 

V 
(4.28) 

where N = —g/po{Ap/Az) is the average buoyancy (or Brunt-Vaisala) frequency, and V is 
an "effective" mass diffusivity, representing the combined effects of thermal diffusivity and 
either salt diffusivity (ocean) or water vapor diffusivity (atmosphere). 

In all vortex street simulations, Fr = 2.75 and Rer = 19200. In addition, Sc was set to 
1, close to the ratio of momentum to heat diffusivity in air (Sc„,r = 0.7), but far from the 
oceanic Schmidt numbers for temperature (SC.T = 7) and salinity (Scg = 700). Also, note 
the only difference between (4.27) and (3.2) is the allowance of the density stratification 
dp(z)/dz to be a function of vertical height, rather than a constant. 

4.4.2    Momentum vs. Density Vertical Scales 

The vertical profile of both the velocity (4.1) and density stratification (4.3) are sech2, with 
different vertical scales 5y and Sp. The parameter £ is now defined which describes the ratio 
of the wake to density vertical length scales: 

Op 
(4.29) 

In each simulation, Sy remains fixed, while 6p is altered. Simulations were performed with 
£ ranging from 0.01 (nearly uniform density stratification) to 4 (sharp density step). The 
vertical density stratification profiles with several £'s are shown in Figure 4.7. Note that 
while locally dp(z)/dz differs for each £, the average (nondimensional) change in density 
with height Ap/Az = — 1 is the same. 
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Figure 4.7:  (a) Ambient (nondimensional) density profile and (b) stratification profile for 
each £. Note Ap/Az = —1 for each £, but locally dp(z)/dz is different. 

Notation £ <>~P Su Fr Rer Lx Ly Lz Nx Ny Nz 

F2.75R24 0.01 69.4 0.694 2.75 2400 12 6 6 512 256 256 
F2.75R48 0.01 69.4 0.694 2.75 4800 12 6 6 512 256 256 
F2.75R192 0.01 69.4 0.694 2.75 19200 12 6 6 1024 512 512 
f = 0.01 Same as F2.75R192 
£ = 0.5 0.5 1.39 0.694 2.75 19200 12 (i 6 1024 512 512 

? = 1 1 0.694 0.694 2.75 19200 12 6 (i 1024 512 512 
£ = 2 2 0.347 0.694 2.75 19200 12 6 6 1024 512 512 
£ = 4 4 0.174 0.694 2.75 19200 12 (i 6 1024 512 512 
No Strat N/A N/A 0.694 oo 19200 12 (i 6 1024 512 512 

Table 4.1: List of vortex street simulations 

4.5     Simulation Results 

In this section results are presented for vortex street simulations. Comparisons will be made 
with different Rer for £ = 0.01 (yielding a near uniform density stratification, see 4.7) as 
well as for all £ simulations, with Fr = 2.75 and Rer = 19200. Table 4.1 contains a list of the 
vortex simulations performed, including Froude and Reynolds number as defined in (4.28), 
domain size, and number of grid points Nx, Ny, Nz in the x, y, and z directions. General 
flow characteristics are first presented followed by flow energetics and finally quantities of 
interest such as buoyancy Reynolds number and mixing efficiency. 

4.5.1     General Flow Characteristics 

In order to gain insight into the general flow dynamics, a time-series plot of the center plane 
streamfunction ip as defined in Riley and de Bruyn Kops [2003] is shown in Figure 4.8 for 
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Figure 4.8: Contour plot of center plane stream function tp for F2.75R192, £=0.01. Light 
colors represent positive values of i/>, dark colors represent negative values. 

the simulation £ = 0.01, where light colors represent positive vortices, dark colors represent 
negative vortices. Cases having other £ values demonstrate qualitatively similar results. 
The von Karman vortex street is clear at t = 0. As the simulated flow evolves, the vortices 
interact with each other, and vortex pairing occurs by t = 15. 

As the flow evolves, vertical velocity (w) is generated due to internal waves and turbu- 
lence formation. Since the flow was initialized with no vertical velocity, w can be used as 
an indicator of turbulence generation. Figure 4.9 contains plots of the center plane (z = 0) 
vertical velocity at several different times for simulation F2.75R192. At t — 5 a "herring 
bone" pattern of vertical velocity forms where there is large shear between vortices. The 
vertical velocity increases in time, reaching a at maximum approximately t = 10 before 
decaying. 

In density stratified flows it is well known that turbulence forms in intermittent, localized 
patches. Figure 4.10 contains plots of center plane vertical velocity at t = 10 for simulations 
£ = 0.01 (left plot) and No Strat (right plot). Simulation £ = 0.01 is representative of all 
stratified simulations, where intermittent turbulent patches form, which is consistent with 
prior studies regarding density stratified flows. In contrast, vertical velocity is shown to 
be distributed throughout the plane for the No Strat simulation. This results suggests the 
stratified simulations are representative of flows observed in laboratory and natural settings. 

Shear and Richardson Number 

In stratified flows dominated by vortical modes (such as those simulated in this study), 
it is postulated that horizontal layer decoupling occurs, and the flow will be susceptible 
to Kelvin-Helmholtz shear instabilities [Lilly, 1983].   The square of the vertical shear of 
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Figure 4.9: Center plane (z = 0) vertical velocity for the same times as in Figure 4.8. All 
figures have the same colormap scaling. Dark colors represent negative (downward) velocity, 
light colors represents positive velocity. 

Figure 4.10: Center plane (z = 0) vertical velocity for £ = 0.01 (left plot) and no stratifica- 
tion (right plot). Dark colors represent negative (downward) velocity, light colors represent 
positive velocity. 
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horizontal motions is defined as: 

^(t)2+(to2        (4-3o) 

Figure 4.11 contains time evolution plots of the horizontally averaged square of vertical shear 
(S2)H vs. vertical position for several £ and non-stratified simulations, where (•)H denotes 
horizontal (xy) planar averaging. Initially, the shear profile demonstrates a "bimodal" 
pattern with maximum values at z ±0.5, a result of the initial sech2(z) velocity profile (note 
that the initial vertical shear magnitude is very small). The bimodal shear pattern persists 
in time for all the stratified cases, which can be attributed to decoupling of horizontal layers 
in stratified flows suggested by Lilly [1983]. In contrast, the bimodal pattern disappears 
by t = 5 for the non-stratified case, where decoupling does not occur. It is interesting to 
note that the magnitude of (S2)H increases as £ is increased. This is due to the increase 
in local density stratification with £ (Figure 4.7), which in turn causes stronger horizontal 
layer decoupling and an increase in the vertical shear between layers. Also, when £ = 4 
the maximum (S2) H occurs much earlier in time than for other values of £. This is caused 
by a rapid increase in shear at the intersection of the unstratified flow regime outside 
the density stratification layer with the strongly stratified regime. That is, for £ = 4 a 
significant amount of (S2)H occurs where there is no density stratification (|z| > 0.75), 
resulting in the creation of vertical overturning in this area, seen in the planar averaged 
vertical kinetic energy (Ev)H (Figure 4.18(e) below). The density stratification then acts 
as a boundary between the overturning flow outside the stratification and the horizontal 
flow inside, resulting in a larger amount of shear to be generated. 

A quantity related to vertical shear of horizontal motions is the gradient Richardson 
number Ri, defined as the ratio of buoyancy to shear forces. The volume and planar 
averaged Ri are defined here as: 

<m> =  (£)'<£> (4'31) 

<Ri)„    .    (|)2« (4.32, 

where (•) denotes volume averaged quantity. (Ri) is shown in Figure 4.12(a). Initially 
(Ri) is large, indicating that there is insufficient shear to cause instabilities and turbulence. 
Then, as the flow progresses in time, (Ri) rapidly decreases due to vertical decoupling of 
the horizontal motions. (Ri) decreases to about 0.25, supporting the notion that Kelvin- 
Helmholtz instabilities are a mechanism by which turbulence occurs. Further examination 
of the planar averaged Richardson number (Ri)H (Figure 4.12(b)) shows that for all values 
of £, (Ri)/y is significantly less than 0.25 for planes near the center of the wake, suggesting 
it is here where Kelvin-Helmholtz instabilities are begin generated. 

From Figure 4.12, it is apparent that the evolution of (Ri) and the profiles of (Ri)w 

depend strongly on £. When £ < 1, all but the tails of the wake are strongly stratified and 
t lie st rat ification in the center of t IK- wake is si ronger for higher values of £. The flows wit h 
£ < 1 behave as expected based on similar simulations in uniformly stratified turbulence 
Riley and de Bruyn Kops [2003]. In particular, the development of the flow is qualitatively 
independent of the strength of the stratification in the core of the wake, but the time for 
decoupling of the horizontal motions to occur and (Ri) to reach its minimum value increases 
slightly with increased stratification. When £ > 1, however, the wake profile is wider than 
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Figure 4.11: Time evolution of vertical shear of horizontal motion (S2)H for all £ and no 
stratification. Note the difference in horizontal scale for plot (e). dp(z)/dz is shown as 
bold dashed line, and is scaled differently in each figure for comparison to (S2}^. Bold 
horizontal lines mark where dp(z)/dz = —0.01. Since the entire vertical domain satisfies 
this criterion for plots (a)-(b), no bold horizontal lines are shown. 
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Figure 4.12: (a) (Ri) vs. time, (b) Vertical profile of (Ri)/./ vs. height at t = 10. Note 
that all simulations begin with (Ri) = 25. Also note the profiles of Ri with £ > 2 are 
fundamentally different from those with £ < 2. 

the stratification profile and the regions initialized with the highest shear are not strongly 
constrained in the vertical direction by gravity, resulting in earlier less inhibited formation 
of shear. 

For the simulations with £ < 1, the minimum (Ri)// is located near z = 0, as all the 
wake is inside the density stratification layer. In contrast, when £ > 1, some of the wake is 
now outside the stratification layer, and minimum (Ri)// occurs at \z\ > 1.5. This behavior 
of Ri helps explain the large vertical kinetic energy shown in Figure 4.18 below, particularly 
for £ = 4. 

Horizontal Length Scale 

Flows subject to stable density stratification often demonstrate an increasing horizontal 
length scale. This quality is evident in the evolution of the center plane streamfunction 
(ip), shown in Figure 4.8. Theoretical arguments suggest that a horizontal length based on 
an advective time scale £H ~ u^H/s can be calculated. However, in flows that demonstrate 
intermittent turbulence, use of such an advective length scale can result in unrealistic values 
of (.ft (see §3.4.3). Instead, a horizontal length scale is defined here based on the cross- 
correlation of velocity: 

(v(x + r)v(x)) H Ryx{r) = 
(V

2
)H 

(4.33) 

where the Ryx denotes the correlation of y direction velocity (v) in the x direction.  The 
horizontal length scale is then defined as the distance r when Ryx = 0: 

// = r. where Ryx{r) 0 (4.34) 

Figure 4.13 contains a plot of in for all £ after t = 5, when the response to the flow 
initial condition has minimized.   Although somewhat noisy, (H increases in time and is 
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Figure 4.13: ^// evolution for several £. Note the horizontal axis begins at t = 5, when the 
response to the initial condition has diminished. 

proportional to t05.   This value is in agreement with the integral length scale results of 
Praud et al. [2005] and the experimental dipole results of Voropayev and Afanasyev [1992]. 

4.5.2    Energetics 

Kinetic Energy 

A general idea of the flow energetics can be seen by examination of the x direction spectrum 
of horizontal energy Eh(kx), defined as: 

EH{kx) = - (u(kx)u(kx)* + v(kx)v(kx)*) . 

Here ("•) signifies ^-direction Fourier space, (•)* denotes complex conjugate, and kx denotes 
x-direction wavenumber. The left plot of Figure 4.14(a) contains a plot of En(kx) for 
several different Rer at t = 20. The initial peak at kx PS TT/2 corresponds to the separation 
distance between vortices. The large scale spectra is identical for all Rer, which is typical 
of nearly inviscid large scale motions. In contrast, the small-scale motions (large kx) are 
shown to increase monotonically with Rer, consistent with the ability of the flow to generate 
small-scale instabilities with increasing Rer. 

A time evolution of En(kx) for Fr = 2.75, Rer = 19200 is shown in the right plot of Figure 
4.14(b). As the flow evolves, small scale motions are generated causing the magnitude of 
Eff(kx) at high wavenumbers to increase between t — 0 and t = 10. This is consistent with 
the increase in (5 ) „ shown in Figure 4.11. In addition, once the flow has become turbulent 

(after t = 10), it displays a near kx spectrum. This kx dependence is seen for all £ 
(Figure 4.15), and is in agreement with the energy spectra results of Lindborg [2006], who 
also found a fc-5/3 slope for horizontal spectra of horizontal energy. After t — 10 the energy 
at all wavenumbers decreases as the flow decays. 
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Figure 4.14: (a) EH X spectra for several Rer at t — 10; (b) Time evolution of EH X spectra 
for Fr = 2.75, Rer = 19200. Note £ = 0.01 for both plots. The bold dashed-dotted line 
represents A1.,-'    . 
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Figure 4.15: EH X spectrum for all £, t = 10. The bold dashed line represents A:  5/3. The 
bold dashed-dotted line represents k~2. 
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Figure 4.16: Time evolution of (a) (EH) and (b) (Ev) for several Rer, Fr = 2.75, £ = 0.01. 

Figures 4.16 (a) and (b) contain plots of the time evolution of (EH) and {Ey) for several 
Rer and £ = 0.01. {EM) is shown to be relatively independent of Rer. In contrast, the 
maximum (Ey) is directly related to Rer, a likely result of the increased ability for vertical 
motion to overcome the stratification as Rer is increased. Since the initial vertical velocity 
(w) and fluctuating density (p) are set to zero, the flow is not in cyclostrophic balance. As 
a result, a large internal wave immediately forms, which results in an oscillation in both 
(EH) and (Ey). 

The time evolution of (En) and (Ey) for each £ is shown in Figures 4.17(a), (b). As 
£ is increased from 0.01 to 2, the trend is for (EH) to persist longer in time and the 
magnitude of (Ey) to decrease, compared with the unstratified flow. These trends are 
expected, since more work is required to overcome the stronger vertical stratification in 
the vortex "core." However, these trends are reversed when £ > 2, and the flow begins to 
demonstrate traits similar to non-stratified flow. This is because the characteristic height of 
the wake is much smaller than the density stratification height, and a significant portion of 
the wake flow occurs in regions that have very weak density stratification. It is interesting 
that the transition occurs when £ > 2, rather than £ > 1, suggesting that it is the energy 
profile, rather than the velocity profile, that determines when the effect of stratification is 
minimized. Thus, for the simulations with £ < 2, the stratification acts as a boundary to 
confine (Ey)H. In contrast, when £ = 4 a significant amount of (Ey)H forms in regions 
outside the density stratification layer where there is no buoyancy force and overturning 
can readily occur. This can be seen in Figure 4.18, where (Ey)H is plotted vs. z for each 
£ and no stratification. 

TH and Ty are the advection (or transport) terms that describe how EH and Ey are 
advected throughout the flow. By definition, a simulated flow with periodic boundary 
conditions will have zero advection on average, since any transport out of one boundary 
will be transported into the opposite boundary. Hence (TH) and (Ty) are zero, and are not 
shown here. 

The time evolution of (TH)H f°r £ = 0-01 and £ = 4 are shown in Figures 4.19(a), 
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Figure 4.17: Time evolution of (a) (EH) and (b) (Ey) for all £. 

(b). For £ = 0.01, early in the simulation when turbulence is forming (at t = 5) there is 
significant adveetion of EH into the center planes from the adjoining ones (recall that it is 
negative (TH)H in (4.12)). Adveetion of energy into the center planes is counter-intuitive, 
as one would expect energy to be advected from the maximum energy planes to minimum 
energy planes. This can be explained by noting that the planes of positive (T//)w (z ±0.5) 
are also planes of (52)... Since planes of maximum (S2)H will generate a large amount of 
vertical motion (through shear instabilities), energy will be advected out of the planes of 
high shear into the lower shear center plane. (TH) H most diminishes by t = 10. 

The time evolution of (Ty)H for £ = 0.01 and £ = 4 are shown in Figures 4.20(a), 
(b). Similar to (Tn)n, there is a large amount of (Ty)H early in the flow. However, Ey 
is advected out of the center planes into the adjoining planes, in contrast to the inward 
adveetion of EH. The reason for this early transport out of the center of Ey is unclear. 
Perhaps since vertical overturning is originating at the planes of maximum shear, eddies 
will cause a net adveetion of (Ey)H out of the center planes. 

PH and Py are pressure work terms that describe how pressure gradients affect the 
flow energetics. When the dot product of velocity and the pressure gradient taken, the 
result is a pressure work term that affects the evolution of energy. For example, a pressure 
gradient in the direction of the flow increases energy, while flow opposite a pressure gradient 
expends energy. Volume averaged (PH) and (Py) for several Rer and £ = 0.01 are shown 
in Figures 4.21(a), (b). Initially large pressure work is induced as a result of internal wave 
generation from the initial cyclostrophic imbalance. This early pressure work results in an 
initial loss of EH and gain in Ey. Since (Py) is initially negative, when substituted into 
(4.13), it will cause an increase in Ey. The opposite is true for (PH) and (EH). Note that 
for a closed system the pressure can do no net work, so that the total pressure work term 
(P) = (PH) + (Pv) is zero. It is interesting that the magnitudes of (PH) 

and (Py) are 
nearly identical for each Rer, suggesting internal wave motion is controlled by large scale 
dynamics. 

Figure 4.22(a) contains a plot of (PH) VS. time for each £. Figure 4.22(b) contains the 
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Figure 4.18: {Ey) H for several £ and no stratification. Note the difference in horizontal 
scale for plots (e), (f). dp(z)/dz is shown as bold dashed line, and is scaled differently in 
each figure for comparison to (Ey)H. Bold horizontal lines mark where dp(z)/dz — —0.01. 
Since the entire vertical domain satisfies this criterion for plots (a)-(b), no bold horizontal 
lines are shown. 
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Figure 4.19: Evolution of (TH)fJ for (a) £ — 0.01; (b) £ = 4. Note other stratified simulations 
are qualitatively similar 

Figure 4.20: Evolution of (Ty)H for (a) £ = 0.01; (b) £ = 4. Note other stratified simulations 
are qualitatively similar 
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Figure 4.21: (a) (Pw); (b) (Py) for several Rer and £ = 0.01 

same data as Figure 4.22(a), but with the horizontal axis zoomed in to £=0-5. Since pressure 
work must sum to zero for a periodic simulation, (Py) will be the opposite of (P//) (as seen 
in Figure 4.21 above) and is not shown here. Early in time, there is a significant amount of 
pressure work created as internal waves are generated in response to the initial cyclostrophic 
imbalance. It is interesting to see that the magnitude of (P//) for £ = 4 is nearly half the 
magnitude of (PH) for the other £. The reduction in magnitude for £ = 4 can be explained 
by noting that internal waves cannot exist when there is no density stratification, and when 
£ = 4 a significant portion of the simulation domain has minimal density stratification 
(Figure 4.7). Thus, internal waves (and hence and pressure work) do not occur in much of 
the simulation area for £ = 4, and a drop in the volume averaged (P//) is seen. This can be 
seen in a plot of the horizontally averaged (P//)w, shown in Figure 4.23. 

The kinetic energy dissipation rates EH and Ey are the amount of EH and Ey that are 
dissipated into internal energy via viscous effects. The time evolution of (EH) and (sy) 
with £ = 0.01 and several different Rer are shown in Figures 4.24(a), (b). Since the initial 
conditions are the same for each simulation, and only Reynolds number is changed, the 
initial dissipation rates (EH) and (Ey) are inversely proportional to Rer. This relationship 
changes as the flow develops; (EH) increases with Rer as the flow has more ability to generate 
small-scale instabilities, consistent with the increase in small-scale spectra shown in Figure 
4.14(a). It is interesting to note that while (e#) and (sy) increase faster with Rer, their final 
magnitudes are nearly the same for all Rer. This suggests that a "high Reynolds number 
limit" has been reached, where the flow cannot further dissipate kinetic energy. 

Copmarisons of (EH) and (sy) for each £ simulation are found in Figures 4.25(a), (b). 
As the flows evolve, small scale turbulence forms and both (EH) and (ey) increase in time 
before decaying. There is a clear transition in the behavior of (e#) and (ev) between £ = 2 
and £ = 4. The reason for this transition can be explained by the behavior of (5 )H, the 
terms of which are components of (EH) and (ey). When £ = 4, a large amount of overturning 
occurs outside the density stratification layer, which causes a significant amount of shear and 
kinetic energy dissipation rate to form early in the simulation (Figures 4.26, 4.27. Figure 
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Figure 4.22: (a) Time evolution of (PH) for several £, Fr = 2.75, Rer = 19200. (b) Same as 
(a), but zoomed horizontal axis. 

Figure 4.23: Evolution of (PH)H for (a) £ = 0.01; (b) £ = 4. 
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Figure 4.24: Evolution of (a) (ejj), (b) (ey) for all £ = 0.01 simulations. 

4.28 contains plots of (en)n and (ey)H f°r £ = 4 with zoomed vertical axis). 

4> is the quantity that remains when separating the last term in the total kinetic energy 
equation (4.6) into horizontal and vertical components. It is a term that couples horizontal 
and vertical kinetic energy through a process of viscous and rotational strain. The time 
evolution of (4>) for all £ = 0.01 simulations is shown in Figure 4.29(a). Similar to (en), (</>) 
increases with turbulence formation up to approx. t = 8. However, in contrast with (EH) 

and (ey), there is a clear inverse relation between (cp) and Re throughout the simulation. 
This is likely due to the decrease in v with Rer, causing a decrease in viscous coupling 
(and hence </>) between (EH) and (Ey). Note the magnitude of <f> is much smaller than e, 
indicating a very small role in the transport of energy. 

Figure 4.29(b) contains a plot of (4>) for each £, where the overall trend is for (<f>) to 
increase with £ up to £ = 4. The increase in magnitude of ((/>) with £ can be explained 
by noting that as £ is increased the local stratification is increased. The increase in local 
stratification causes "stronger" decoupling of horizontal layers, and an increase in shear 
that results in stronger coupling between vertical and horizontal motions. When £ = 4 (</>) 
reaches a maximum much earlier than the other simulations. This behavior is similiar to 
that seen for (EH) and (ey) (Figure 4.25), where strong horizontal decoupling causes a large 
amount of (4>) to form early in the simulation. 

It is interesting that in Figure 4.29 (<j>) is nearly zero for the non-stratified case. This 
seems counter-intuitive, since when there is no stratification there is no buoyancy force and 
overturning can readily occur. However, when there is no stratification there is very little 
horizontal layer decoupling compared to stratified flow. With no buoyancy force, rotational 
shear is minimized, and (f) will be much smaller compared to when the flow is stratified. This 
is seen in plots of the planar averaged (</>)# shown Figure 4.30, where (4>)H is barely visible 
for the No Strat simulation. Also, when £ = 4 (</>)# is near zero outside the stratification 
layer, whereas significant (e)H occurs when the stratification is minimal (Figures 4.26 and 
4.27). 

The buoyancy flux term B is a coupling term between Ey and Ep. As mass is advected 
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Figure 4.25: Evolution of (a) (en), (b) for each £ simulation. 

vertically it must do work against gravity, and energy is transferred from Ey to Ep. Figure 
4.31(a) contains the time evolution of (B) for several Re,-, £ = 0.01. Interpretation of (B) 
on a time basis is difficult because Ey converted to Ep at one time can be released back to 
Ey at another. However, from Figure 4.31(a) one can conclude that there is a large initial 
buoyancy flux (B) as the flow adjusts to the initial cyclostrophic imbalance, supported 
by the fact that the oscillation in (B) is exactly 180° out of phase with (Py). After this 
initial adjustment, the remaining oscillations in (B) are likely caused by the propagation of 
internal gravity waves. 

Potential Energy 

Figure 4.32(a) contains a plot of the volume averaged available potential energy (Ep) for 
several Re,-, Fr = 2.75, £ = 0.01, where a rapid initial increase in (Ep) is caused by the 
formation of an internal wave from initial cyclostrophic adjustment. Following this initial 
rise, (Ep) decays to an undisturbed state. The oscillations in (Ep) after t « 5 are transfer 
between Ep and Ey via buoyancy flux (B). This is supported by the the fact that the 
oscillations in (Ep) and (B) (Figure 4.31(a)) are in phase with each other. The increase in 
(Ep) with Rer is due to the flow's increased ability to overcome stratification. 

The time evolution of (Ep) for each f is show in in Figure 4.32(b). After the initial flow 
response to the initial contitions by t « 5, the general trend is for (Ep) to be relatively 
independent of £ until £ = 2, after which there is a drop in (Ep) with £. This drop in (Ep) 
can be explained by noting that, by definition, Ep is zero outside the stratification layer 
(since in the limit where dp(z)/dz = 0, N = 0, and Fr = oo). Recalling that wp is a source 
term of Ep (equation 4.26), when £ = 2, the vertical span of Ep has narrowed beyond the 
vertical span of w. (Ep) will thus incorporate areas where Ep is zero, even though vertical 
motion occurs. This can be seen in Figure 4.33, where the peak planar averaged (Ep)H is 
nearly the same for all £, even though there a sharp increase in the volume averaged (Ep). 

Tp is a term that describes the advection of potential energy, and is similar to Tfj and 
Ty. Since the boundary conditions are periodic, the volume averaged (Tp) will be zero, and 
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Figure 4.26: Evolution of (e//)w for all £. The dashed line represents the density stratifi- 
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vertical domain satisfies this criterion for plots (a)-(b), no bold horizontal lines are shown. 
When £ = 4, much of the (EH)n is formed earlier in time outside the stratification layer 
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Figure 4.32: Time evolution of (Ep) for (a) several Rer, Fr = 2.75, £ = 0.01, (b) Several £, 
Fr = 2.75, Rer = 19200. 

is not shown here. 
Planar averaged (Tp)H for F2.75R192 is shown in Figure 4.34. (Tp)H is qualitatively 

similar for all simulations. Early in the simulation at t « 5, Ep is seen to be advected into 
the center planes from the adjoining planes, where the initial high vertical shear is formed. 
Advection then diminishes, as the majority of transport of Ep occurs due to B and x- 

X is the potential energy dissipation rate, which can be described as the irreversible 
conversion from available to background potential energy, similar to e (see §4.2.2 for further 
discussion on background potential energy). The time evolution of the volume averaged (x) 
for several Rer and £ = 0.01 is shown in Figure 4.35(a). Since the flow is initialized with no 
density fluctuation, (x) is also initially zero. Early in the simulation (t < 7) (x) is inversely 
proportional to Rer, a result of the fact that the initial condition for each simulation is the 
same, and only the mass diffusivity T> is changed (recall that Sc = 1 for all simulations). 
Then, as the flow evolves further and turbulent small-scale motions form, (x) demonstrates 
an increase with Rer, similar to (e). 

The time evolution of (x) for each £ is shown in Figure 4.35(b), where the magnitude of 
(x) increases in time as small scale turbulence forms. The time to reach peak (x) increases 
as £ is increased from 0.01 to 2. When £ = 4, in contrast, the peak (x) occurs earlier, 
indicating turbulent motions occur earlier in time. This behavior is in agreement with that 
seen for the kinetic energy dissipation rates (Figure 4.25). However, unlike {en} and (ey), 
the magnitude of {x) decreases when £ > 2. This is because x is zero when there is no 
stratification for the same reason Ep is zero. Thus, when £ > 2, a significant portion of the 
volume has x = 0> (Figure 4.36), which causes (x) to be small. 

4.5.3     Mixing and Mixing Efficiency 

The behavior of (e) and (x) with respect to £ has implication in modeling the Earth's 
energy budget. Current Earth general circulation models (gem's), assuming linear density 
stratification, show an imbalance in vertical heat fluxes by as much as 20% [Howard et al., 



4.5.   SIMULATION RESULTS 71 

N 0 

0        0.01      0.02     0.03     0.04     0.05 
(Ep)H 

N 0 

-3, 

t               ^'           (c) 

^ 

^*^S£?£~m-?*'^mmmm 

: ^T^Si^-^ 
7J2&*"""' 

i 
1           i           i           i           i      . 
0        0.01      0.02     0.03     0.04     0.05 

<Ep>H 

0        0.01      0.02      0.03      0.04     0.05 

(EP)H 
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2004, Marmorino and Caldwell, 1976, Robertson et al., 1995]. This imbalance may be due 
to the mixing results obtained with a linear density stratification throughout the Earth's 
atmosphere and ocean. From Figures 4.25 and 4.35(b), one can see that for the same initial 
flow conditions, peak (e) increases by 25% when a sharp density gradient exists (£ = 4), 
while (x) decreases by 50%. This results suggests that in areas of sharp density gradients, 
assuming a uniform density gradient leads to under-predicting mixing of kinetic energy e, 

and over-predicting \- 
As discussed in §1.2.2, a quantity of interest is the mixing efficiency T, which is the ratio 

of the available potential energy lost by molecular diffusion to kinetic energy lost by viscous 
dissipation [e.g., Smyth et al., 2001, Winters et al., 1995]. Here T will be defined as in (1.4) 
(and dropping the subscript a): 

T = ^. (4.35) 

T is of interest because it is difficult to measure both e and x simultaneously in field 
experiments due to the time scales required to measure each quantity [Gargett and Mourn, 
1995]. Thus, it would be beneficial to measure one quantity (usually e) and relate it to 
the other [Osborn, 1980]. Figure 4.37(a) contains the volume averaged mixing efficiency 
(r) = (x) I (i)- Initially, T = 0 (since x — 0), after which there is a rapid increase in (r) 
to near 0.9 as the density field responds to the initial cyclostrophic imbalance. As the flow 
evolves and small-scale instabilities occur, e increases and causes (r) to drop to « 0.45, in 
agreement with results from other numerical simulations of uniformly stratified flows [e.g., 
Riley and de Bruyn Kops, 2003, Smyth et al., 2001, Staquet, 2000]. (r) is also shown to be 
relatively independent of Rer, which is consistent with the aforementioned studies. 

The evolution of (r) for each £ is shown in Figure 4.37(b), where the general trend is for 
a large initial (r) to form up to t « 7, after which (r) settles to a constant value related to 
the value of £. The early rise in (r) is due to the flow's initial ability to dissipate available 
potential energy to background potential energy (x) faster than kinetic energy is dissipated 
to internal energy (e). As the flow progresses and small-scale instabilities occur, e increases 
and causes (r) to drop before settling to some constant value. These results are consistent 
with the aforementioned studies of uniformly stratified flows. 

Since the vertical span of x decreases as £ increases (Figure 4.36), the value of (T) 
will also decrease due to the inclusion of areas of zero mixing in the volume average. It 
would be of interest to know what the mixing efficiency is inside the density stratification 
layer. In this case, the density stratification layer is defined where \dp(z)/dz\ > 0.01. The 
value of 0.01 is chosen because it is 1% of the stratification value when £ = 0.01. Figure 

4.38(b) contains a plot of the time evolution of (^)STRAT ~ (X)STRAT I (
£
)STRAT- where 

the subscript STRAT denotes average over the density stratification range. Large initial 
values of (F)STRAT can be seen for the same reasons as (r). It is interesting to note that 

(r) STRAT 
settles to near the same value for all £. 

To get a better idea of how T is behaving throughout this flow, the planar averaged 

(T)H = (X)H I (
£
)H f°r eacn £ is shown in Figure 4.39, where the value of (r)^ is relatively 

independent of £ in the center of the domain. The peak at z = 0 is due to the centerplane 
dip in (e)H seen in Figures 4.26, 4.27. The trend for (r)w to increase when |z| > 0.5 is due 
to the decreasing value of e in this range. Outside \z\ > 0.5 e is very small and results in a 
noisy (T)H, particularly for £ = 0.5. In addition, since x IS zero outside the stratification 
layer, T is also zero. This suggests that in an area with non-uniform density stratification, 
mixing can only occur in the region of high density gradient. Such a result is in agreement 
with the findings of Schmitt [2003], St. Laurent and Schmitt [1999], where increased mixing 
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is found in the sharp density gradients of thermohaline staircases, where salt fingering is 
prone to occur. 

4.5.4    Buoyancy Reynolds Number 

In stratified flows, the importance of turbulence is often parameterized in terms of the 
buoyancy Reynolds number Reb [e.g., Gibson, 1980, Gregg, 1987, Imberger and Boashash, 
1986, Smyth and Moum, 2000a]. Reb is usually defined as the ratio of the Ozmidov scale L0 

to the Kolmogorov scale L^ (see §2.1.9 for further discussion on Reb). Recalling equation 
2.57, Reb is defined as: 

Reb = ( b-) 3 = ^ • (4.36) 

From this definition, Reb = 21.5 for one decade of turbulent length scales to form. Analysis 
by Gibson [1980] resulted in Reb « 30 for "active" turbulence to form. Figure 4.40(a) is 
a plot of the time evolution of the volume averaged buoyancy Reynolds number (Reb) = 

(i) /(i^N ) for several Rer, where the maximum (Reb) of 14 might suggest that the flow does 
not have an adequate range of length scales for turbulence to form. This is misleading, as 
the volume averaged data includes areas outside the wake "core" where there is little energy 
(and hence e), particularly at the outer edges of the flow where |z| > 2. Consequently, the 

planar averaged (Reb)H = (e)H jv ( N )    can be examined to get a better idea of how Reb is 

acting locally. Figure 4.40(b) contains a plot of the time evolution of (Re^) H for simulation 
F2.75R192, where the magnitude of (Re^) H approaches 40 in the center of the vertical 
domain by t = 10. Thus, according to the criterion specified by Gibson, the simulated flow 
is in fact actively generating turbulent motions. It is also interesting to note the dip in 
(Reb)w at z = 0, which occurs at the same location as the dip in (S2)„ (Figure 4.11), 
suggesting a strong role of S2 in the formation of turbulent motions. 

Figure 4.41(a), contains a plot of the volume averaged (Reb) for each £. Similar to Figure 
4.40(a), the maximum value of (Reb) is less than the 21.5 needed for active turbulence to 
form. Also, at t — 10, the maximum (Reb)w is between 22 and 40 (Figure 4.41(b)), 
indicating active turbulence formation. The rapid rise in (Reb) for £ = 4 is attributed to 
the behavior of (e), which increases rapidly due to the shear caused in the region where 
overturning flow intersects with strongly stratified flow. 

4.5.5    Vertical shear vs. kinetic energy dissipation rate 

In field studies, e is usually inferred from measurements of one or two components of the 
strain rate tensor eij. In strong, stable density stratification, it is often assumed that S2 

causes most of e, leading to the following relationship: 

52 .. (4.37) 

While the ratio vS2fe~ 0.9 has been shown to hold for a large range of Reynolds numbers 
[Fincham et al., 1996, Praud et al., 2005], in §3.4.1 of this document the above relation was 
found to be true only when Reb < 0(1). Figure 4.42 contains plots of the volume averaged 

quantity v \S2) / (e) vs. (Reb) for (a) several Rer, £ = 0.01, and (b) several £, Fr = 2.75, 

Rer = 19200.  In each plot, the heavy dashed line signifies the value v (S2) / (e) = 0.26, 
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which is the approximate value expected if the flow were isotropic [Hinze, 1975]. As in §3.4.1, 
(R«b) increases to above 1 as the flow evolves and turbulence forms. Correspondingly, 

J>(5
2
 } / (?) decreases to below 0.5, signifying S2 accounts for less than half the kinetic 

energy dissipation rate. (Note that with the influence of gravity on stratified flows, isotropy 
is not expected, hence u (S2) / (e) should not reach the isotropic limit). Then, as the flow 
decays, (Reb) decreases, and the ratio v (S2) / (e) increases. 

In order to see if (4.37) holds locally, the quantity i>(S2)    / (e)^ is shown in Figure 

4.43. In comparing with Figure 4.41(b), one can see that locally, i> (S2) / (e)H « 0.8 only 

for £ = 4, where (Reb)w < 1. 
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Chapter 5 

Summary and Suggested Future 
Work 

5.1     Summary 

5.1.1     Uniform Density Stratification 

A series of high-resolution direct numerical simulations are used to investigate turbulence in 
stably stratified flows. The simulated flows are dominated by vortical modes and decay in 
time since there is no input of energy from the mean flow. In this regime, the Froude number 
decreases and the Reynolds number increases in time so that a strongly stratified flow with 
turbulence eventually develops except when the initial Reynolds number is extremely low. 
The predominant cause of turbulence in the simulations is Kelvin-Helmholtz instabilities 
that result when the flow organizes itself into quasi-horizontal vortices that are weakly 
coupled in the vertical direction. 

This observation that shear instabilities are the primary trigger for turbulence in the 
simulations supports the theoretical derivation of the F^Re/, parameterization developed 
in Riley and de Bruyn Kops [2003], namely that 1/F^Re^ is related to the Richardson 
number, so when F|Re/j > 0{\) turbulence can be expected. To test this hypothesis, the 
horizontal length scale, L^, on which F/j and Re/j are based, is defined as the correlation 
length of the horizontal velocity. When this definition is used it is observed that L^, F/,, 
and Re/i all evolve in time consistently with theoretical predictions for all of the simulation 
cases. Furthermore, l/F^Re^ « Ri over a two decade span of Richardson numbers. This 
result encourages the thought that F^Re/j can be used a priori to estimate if a laboratory 
or simulated flow will involve considerable turbulence provided that the correlation length 
of the horizontal velocity can be estimated from the initial and boundary conditions for the 
flow. 

F^Re/j is compared with the buoyancy Reynolds number for all the simulation cases, 
and it is found that the two quantities are nearly the same. While Reb is traditionally 
defined as the ratio of the overturning length scale to the viscous length scale, the fact 
that F^(Re/j ~ Reb suggests that a shear-based argument might be used to better explain 
why Reb has proven to be a useful parameterization. Also, since F^Re/j involves the num- 
ber of dimensionless groups predicted by dimensional analysis, it encourages considering 
turbulence in stratified flows as occurring when the Froude and Reynolds numbers are in 
some region of the two-dimensional Froude-Reynolds number space rather than when the 
buoyancy Reynolds number is above some transition value. 
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Finally, it is found that the contribution of vertical shear to the total dissipation rate 
of kinetic energy is a strong function (Ret,). The simulation results, taken in conjunction 
with the laboratory experiments of Fincham et al. [1996] and Praud et al. [2005], indicate 
that the relation v (<S2) / (e) « 0.9 only applies when (Re^,) is order one or less. For higher 
values of (Ret,), normal strains make a significant contribution to (e) and \52) is not well 
correlated with (e). As a result, field measurement of only one or two components of the 
strain rate in the ocean can lead to under-prediction of the true dissipation rate by as much 
as a factor of 7. 

5.1.2    Nonuniform Density Stratification 

Simulations are conducted for flows initialized with a von Karman vortex street and no mean 
velocity or shear, similar to a momentumless wake. Each simulation was subject to a non- 
uniform density stratification which resembles the stratification found in natural settings 
such as a thermohaline staircase. A method is derived to determine available potential 
energy for this particular flow, followed by analysis of flow energetics. For each simulation, 
the overall change in density with height is the same, but the wake height relative to the 
density layer is altered. The results are also compared to a simulated flow in which no 
density stratification is present. 

The simulated density stratified flows in which the wake height is less than or equal to 
twice the density layer height (£ < 2) are shown to agree with the current understanding 
of density stratified flows. This includes growth of horizontal length scales and decrease 
in vertical length scales as the flow evolves, in agreement with the scaling arguments of 
Riley et al. [1981] and the horizontal layer decoupling heuristic by Lilly [1983]. However, 
when the wake is greater that twice the density layer height (£ > 2), the importance of 
the density stratification is diminished, and the flow begins to demonstrate characteristics 
of non-stratified flows. That is, Efj dissipates faster and Ey, £, and x demonstrate rapid 
increases in magnitude. The transition point of £ > 2 suggests that it is the relation of the 
local energy profile to the density layer, rather than velocity profile, that will determine if 
the flow will behave in a stratified manner. 

The results also demonstrate that when a sharp, localized density gradient exists, as- 
suming a uniform density gradient will under-report (e) up to 25%, while over-reporting (x) 
by as much as 50%. This may help explain errors in the reporting of energy budgets from 
general circulation models currently in use. In addition, it has been shown that available 
potential energy, Ep, and potential energy dissipation rate, x, are confined to the area of 
density stratification. Thus, when £ > 2, the volume averaged (Ep) drops, while locally 
(Ep)H is similar in magnitude for all £. 

Finally, the mixing efficiency (r) is shown to drop significantly when £ > 2. However, 
since x iS zero when there is no stratification, the average mixing efficiency inside the 
stratification region TSTRAT was computed. T$TRAT was found to be between 0.3 and 0.5 
for all simulations, which is in agreement with previous studies of uniformly stratified fluids. 
Also, the notion that T will be confined to the area of density stratification by definition 
lends support to the results of St. Laurent and Schmitt [1999], in which large values of T 
are reported in regions where salt fingering occurs. 
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5.2    Suggested Future Work 

5.2.1 Scales of Motion 

Turbulent flows subject to strong stable stratification evolve differently from flows in which 
the stabilizing effect of gravity is either absent or negligible. Two reasons for this are (1) 
potential energy plays an important role in stratified flows and (2) stably stratified flows 
tend to be quasi-two-dimensional and hence lose less kinetic energy to heat through viscous 
mechanisms than similar unstratified flows. While these two differences between stratified 
and unstratified turbulence are readily apparent, just how they and other phenomena affect 
the flow dynamics, and the implications with respect to our ability to predict stably stratified 
turbulence, is not well understood. For example, questions remain as to what scales energy is 
converted from one form to another, e.g., from potential to kinetic, kinetic to heat, etc. Also, 
there is a question of how the scales of motion are affected when exposed to different density 
stratifications. The above questions can be examined using direct numerical simulations, 
since all terms in the momentum and density equations are directly computed, and all 
dynamically relevant scales of the flow are adequately resolved. (This is not to say that 
DNS can be used for large scale simulations, for which the required spatial resolution to 
perform a DNS makes such simulations impractical. Rather, DNS is a powerful tool when 
used for the appropriate sized case.) It is also of interest to compare how flow energetics 
differ (if at all) between the Taylor-Green and vortex street simulations. 

5.2.2 Turbulent Patch Identification and Tracking 

Turbulence in density stratified flows tends to form in intermittent patches, and requires 
a large number of data points to adequately describe the flow characteristics [Baker and 
Gibson, 1987, Gibson, 1981]. Also, it is in these turbulent patches that the majority of 
quantities of interest occur, including mixing and dissipation of energy. The ability to iden- 
tify and track turbulent patches could lead to further insight into fundamental turbulent 
processes. Attempts at identifying turbulent structures have been made by using wavelet 
analysis [e.g., Dallman et al., 1999, Farge, 1992, Katul and Vidakovic, 1998], which is sim- 
ilar to the filtering process of large eddy simulations (LES). The difference is that while 
LES separates the fields in large and small scales, wavelet analysis separates the field into 
Gaussian and non-Gaussian components [Goldstein et al., 2000]. The Gaussian component 
represents random noise, while the non-Gaussian components represents coherent struc- 
tures. A drawback of this method is that the portion of the flow identified as a turbulent 
structure is dependent on the type of wavelet filter used (e.g., Haar, Donoho, etc.) and the 
level of filtering applied, leaving the selection of coherent structures a subjective process. 
A more objective method would remove much of the arbitrariness involved in the wavelet 
method, and perhaps yield clearer turbulent phenomena insight. 
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Appendix A 

Equation of state for seawater 

The equation of state for the density of seawater (p) is given in terms of potential tem- 
perature (0°C), practical salinity (5, in practical salinity units), and pressure (p, in bars) 
[Millero and Poisson, 1981]: 

P(s,e,p) = p(s,e,o)/[i-pK(s,e,p)], (A.i) 

where p(S, 9,0) is the density at reference pressure of zero bars, and and K is the secant 
bulk modulus: 

p(S, 9,0)    =   999.842594 + 6.793952 x 1(T29 - 9.09529 x KT302 

+ 1.001685 x 10~493 - 1.120083 x 10"694 +6.536332 x 1O"905 

+8.24493 x HrlS - 4.0899 x 10~3S9 + 7.6438 x 10"5G25 

-8.2467 x 10-7935 + 5.3875 x 10~994S - 5.72466 x 10_3515 

+ 1.0227 x lO-'GS1 5 - 1.6546 x 10_6e2SL5 + 4.8314 x 10~452 

K(S, 0, p)    =    19652.21 + 148.42069 - 2.32710592 + 

1.360477 x 10293 - 5.155288 x 10564 + 3.239908p 

+ 1.43713 x 1039p+ 1.16092 x 10492p - 5.77905 x 10793p 

+8.50935 x 105p2 - 6.12293 x 1069p2 + 54.67465 

-0.60345995 + 1.09987 x 102925 - 6.167 x 105935 

+7.944 x 1025L5 + 1.6483 x 1029515 - 5.3009 x lO^S1 5 

+2.2838 x 103pS - 1.0981 x 1059p5 - 1.6708 x 10692p~S 

+ 1.91075 x 104pS15 - 9.9348 x 107p2S + 2.0816 x 1089p2S 

+9.1697 x 101092p25; 
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